
The WebSocket API

Editor's Draft 23 April 2013

Latest Published Version:
http://www.w3.org/TR/websockets/

Latest Editor's Draft:
http://dev.w3.org/html5/websockets/

Previous Versions:
http://www.w3.org/TR/2009/WD-websockets-20090423/
http://www.w3.org/TR/2009/WD-websockets-20091029/

Editor:
Ian Hickson, Google, Inc.

Copyright © 2012 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.
The bulk of the text of this specification is also available in the WHATWG Web Applications 1.0 specification, under a license that permits reuse of the
specification text.

Abstract

This specification defines an API that enables Web pages to use the WebSocket protocol
(defined by the IETF) for two-way communication with a remote host.

Page 1 of 22

Status of This document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the most
recently formally published revision of this technical report can be found in the W3C technical
reports index at http://www.w3.org/TR/.

If you wish to make comments regarding this document, you can enter feedback using this
form:

Feedback Comments

Please enter your feedback, carefully indicating the title of the section for which you
are submitting feedback, quoting the text that's wrong today if appropriate. If you're
suggesting a new feature, it's really important to say what the problem you're trying to
solve is. That's more important than the solution, in fact.





Note: Please don't use section numbers as these tend to change
rapidly and make your feedback harder to understand.

Submit feedback (Note: Your IP address and user agent will be publicly recorded for spam

prevention purposes.)

You can also e-mail feedback to public-webapps@w3.org (subscribe, archives), or
whatwg@whatwg.org (subscribe, archives). All feedback is welcome.

Implementors should be aware that this specification is not stable. Implementors who are not
taking part in the discussions are likely to find the specification changing out from under
them in incompatible ways. Vendors interested in implementing this specification before it
eventually reaches the Candidate Recommendation stage should join the aforementioned
mailing lists and take part in the discussions.

The latest stable version of the editor's draft of this specification is always available on the W3C
CVS server and in the WHATWG Subversion repository. The latest editor's working copy (which
may contain unfinished text in the process of being prepared) contains the latest draft text of
this specification (amongst others). For more details, please see the WHATWG FAQ.

Notifications of changes to this specification are sent along with notifications of changes to
related specifications using the following mechanisms:

E-mail notifications of changes
Commit-Watchers mailing list (complete source diffs):
http://lists.whatwg.org/listinfo.cgi/commit-watchers-whatwg.org

Browsable version-control record of all changes:
CVSWeb interface with side-by-side diffs: http://dev.w3.org/cvsweb/html5/
Annotated summary with unified diffs: http://html5.org/tools/web-apps-tracker
Raw Subversion interface: svn checkout http://svn.whatwg.org/webapps/

The W3C Web Applications Working Group is the W3C working group responsible for this
specification's progress along the W3C Recommendation track. This specification is the 23 April
2013 Editor's Draft.

Page 2 of 22

This specification is being developed in conjunction with an RFC for a wire protocol, the
WebSocket Protocol, available from the following location:

• RFC 6455: The WebSocket Protocol: http://tools.ietf.org/html/rfc6455

This document was produced by a group operating under the 5 February 2004 W3C Patent
Policy. W3C maintains a public list of any patent disclosures made in connection with the
deliverables of the group; that page also includes instructions for disclosing a patent. An
individual who has actual knowledge of a patent which the individual believes contains
Essential Claim(s) must disclose the information in accordance with section 6 of the W3C
Patent Policy.

This document was produced by a group operating under the 5 February 2004 W3C Patent
Policy. W3C maintains a public list of any patent disclosures made in connection with the
deliverables of the group; that page also includes instructions for disclosing a patent. An
individual who has actual knowledge of a patent which the individual believes contains
Essential Claim(s) must disclose the information in accordance with section 6 of the W3C
Patent Policy.

Page 3 of 22

Table of Contents

1 Introduction

2 Conformance requirements
2.1 Dependencies

3 Terminology

4 The WebSocket interface

5 Feedback from the protocol

6 Ping and Pong frames

7 Parsing WebSocket URLs

8 Event definitions

9 Garbage collection

References

Acknowledgements

Page 4 of 22

1 Introduction

This section is non-normative.

To enable Web applications to maintain bidirectional communications with server-side
processes, this specification introduces the WebSocket interface.

Note: This interface does not allow for raw access to the underlying network.
For example, this interface could not be used to implement an IRC client without
proxying messages through a custom server.

Page 5 of 22

2 Conformance requirements

All diagrams, examples, and notes in this specification are non-normative, as are all sections
explicitly marked non-normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this document are to be
interpreted as described in RFC2119. For readability, these words do not appear in all
uppercase letters in this specification. [RFC2119]

Requirements phrased in the imperative as part of algorithms (such as "strip any leading space
characters" or "return false and abort these steps") are to be interpreted with the meaning of the
key word ("must", "should", "may", etc) used in introducing the algorithm.

Some conformance requirements are phrased as requirements on attributes, methods or
objects. Such requirements are to be interpreted as requirements on user agents.

Conformance requirements phrased as algorithms or specific steps may be implemented in any
manner, so long as the end result is equivalent. (In particular, the algorithms defined in this
specification are intended to be easy to follow, and not intended to be performant.)

The only conformance class defined by this specification is user agents.

User agents may impose implementation-specific limits on otherwise unconstrained inputs, e.g.
to prevent denial of service attacks, to guard against running out of memory, or to work around
platform-specific limitations.

When support for a feature is disabled (e.g. as an emergency measure to mitigate a security
problem, or to aid in development, or for performance reasons), user agents must act as if they
had no support for the feature whatsoever, and as if the feature was not mentioned in this
specification. For example, if a particular feature is accessed via an attribute in a Web IDL
interface, the attribute itself would be omitted from the objects that implement that interface —
leaving the attribute on the object but making it return null or throw an exception is insufficient.

2.1 Dependencies

This specification relies on several other underlying specifications.

HTML
Many fundamental concepts from HTML are used by this specification. [HTML]

WebIDL
The IDL blocks in this specification use the semantics of the WebIDL specification.
[WEBIDL]

Page 6 of 22

3 Terminology

The construction "a Foo object", where Foo is actually an interface, is sometimes used instead

of the more accurate "an object implementing the interface Foo".

The term DOM is used to refer to the API set made available to scripts in Web applications, and
does not necessarily imply the existence of an actual Document object or of any other Node

objects as defined in the DOM specifications. [DOM]

An IDL attribute is said to be getting when its value is being retrieved (e.g. by author script), and
is said to be setting when a new value is assigned to it.

Page 7 of 22

4 The WebSocket interface

The WebSocket(url, protocols) constructor takes one or two arguments. The first

argument, url, specifies the URL to which to connect. The second, protocols, if present, is either
a string or an array of strings. If it is a string, it is equivalent to an array consisting of just that
string; if it is omitted, it is equivalent to the empty array. Each string in the array is a subprotocol
name. The connection will only be established if the server reports that it has selected one of
these subprotocols. The subprotocol names must all be strings that match the requirements for
elements that comprise the value of Sec-WebSocket-Protocol header fields as defined by

the WebSocket protocol specification. [WSP]

When the WebSocket() constructor is invoked, the UA must run these steps:

1. Parse a WebSocket URL's components from the url argument, to obtain host, port,
resource name, and secure. If this fails, throw a SyntaxError exception and abort these

steps. [WSP]

2. If secure is false but the origin of the entry script has a scheme component that is itself a
secure protocol, e.g. HTTPS, then throw a SecurityError exception and abort these

steps.

3. If port is a port to which the user agent is configured to block access, then throw a
SecurityError exception and abort these steps. (User agents typically block access to

well-known ports like SMTP.)

Access to ports 80 and 443 should not be blocked, including the unlikely cases when
secure is false but port is 443 or secure is true but port is 80.

enum BinaryType { "blob", "arraybuffer" };

[Constructor(DOMString url, optional (DOMString or DOMString[])

protocols)]

interface WebSocket : EventTarget {

 readonly attribute DOMString url;

 // ready state

 const unsigned short CONNECTING = 0;

 const unsigned short OPEN = 1;

 const unsigned short CLOSING = 2;

 const unsigned short CLOSED = 3;

 readonly attribute unsigned short readyState;

 readonly attribute unsigned long bufferedAmount;

 // networking

 attribute EventHandler onopen;

 attribute EventHandler onerror;

 attribute EventHandler onclose;

 readonly attribute DOMString extensions;

 readonly attribute DOMString protocol;

 void close([Clamp] optional unsigned short code, optional

DOMString reason);

 // messaging

 attribute EventHandler onmessage;

 attribute BinaryType binaryType;

 void send(DOMString data);

 void send(Blob data);

 void send(ArrayBuffer data);

 void send(ArrayBufferView data);

};

IDL

Page 8 of 22

4. If protocols is absent, let protocols be an empty array.

Otherwise, if protocols is present and a string, let protocols instead be an array consisting
of just that string.

5. If any of the values in protocols occur more than once or otherwise fail to match the
requirements for elements that comprise the value of Sec-WebSocket-Protocol

header fields as defined by the WebSocket protocol specification, then throw a
SyntaxError exception and abort these steps. [WSP]

6. Let origin be the ASCII serialization of the origin of the entry script, converted to ASCII
lowercase.

7. Return a new WebSocket object, but continue these steps asynchronously.

8. Establish a WebSocket connection given the set (host, port, resource name, secure),
along with the protocols list, an empty list for the extensions, and origin. The headers to
send appropriate cookies must be a Cookie header whose value is the cookie-string

computed from the user's cookie store and the URL url; for these purposes this is not a
"non-HTTP" API. [WSP] [COOKIES]

When the user agent validates the server's response during the "establish a WebSocket
connection" algorithm, if the status code received from the server is not 101 (e.g. it is a
redirect), the user agent must fail the WebSocket connection.

⚠⚠⚠⚠Warning! Following HTTP procedures here could introduce serious security
problems in a Web browser context. For example, consider a host with a
WebSocket server at one path and an open HTTP redirector at another. Suddenly,
any script that can be given a particular WebSocket URL can be tricked into
communicating to (and potentially sharing secrets with) any host on the Internet,
even if the script checks that the URL has the right hostname.

Note: If the establish a WebSocket connection algorithm fails, it triggers
the fail the WebSocket connection algorithm, which then invokes the close
the WebSocket connection algorithm, which then establishes that the
WebSocket connection is closed, which fires the close event as described

below.

The url attribute must return the result of resolving the URL that was passed to the

constructor. (It doesn't matter what it is resolved relative to, since we already know it is an
absolute URL.)

The readyState attribute represents the state of the connection. It can have the following

values:

CONNECTING (numeric value 0)

The connection has not yet been established.
OPEN (numeric value 1)

The WebSocket connection is established and communication is possible.
CLOSING (numeric value 2)

The connection is going through the closing handshake, or the close() method has

been invoked.
CLOSED (numeric value 3)

The connection has been closed or could not be opened.

When the object is created its readyState must be set to CONNECTING (0).

Page 9 of 22

The extensions attribute must initially return the empty string. After the WebSocket

connection is established, its value might change, as defined below.

Note: The extensions attribute returns the extensions selected by the server, if

any. (Currently this will only ever be the empty string.)

The protocol attribute must initially return the empty string. After the WebSocket connection

is established, its value might change, as defined below.

Note: The protocol attribute returns the subprotocol selected by the server, if

any. It can be used in conjunction with the array form of the constructor's
second argument to perform subprotocol negotiation.

The close() method must run the following steps:

1. If the method's first argument is present but is neither an integer equal to 1000 nor an
integer in the range 3000 to 4999, throw an InvalidAccessError exception and abort

these steps.

2. If the method's second argument is present, then run these substeps:

1. Let raw reason be the method's second argument.

2. Let Unicode reason be the result of converting raw reason to a sequence of Unicode
characters.

3. Let reason be the result of encoding Unicode reason as UTF-8.

4. If reason is longer than 123 bytes, then throw a SyntaxError exception and abort

these steps. [RFC3629]

3. Run the first matching steps from the following list:

↪↪↪↪ If the readyState attribute is in the CLOSING (2) or CLOSED (3) state

Do nothing.

Note: The connection is already closing or is already closed. If it
has not already, a close event will eventually fire as described

below.

↪↪↪↪ If the WebSocket connection is not yet established [WSP]
Fail the WebSocket connection and set the readyState attribute's value to

CLOSING (2). [WSP]

Note: The fail the WebSocket connection algorithm invokes the
close the WebSocket connection algorithm, which then
establishes that the WebSocket connection is closed, which fires
the close event as described below.

↪↪↪↪ If the WebSocket closing handshake has not yet been started [WSP]
Start the WebSocket closing handshake and set the readyState attribute's

value to CLOSING (2). [WSP]

If the first argument is present, then the status code to use in the WebSocket
Close message must be the integer given by the first argument. [WSP]

If the second argument is also present, then reason must be provided in the
Close message after the status code. [RFC3629] [WSP]

Page 10 of 22

Note: The start the WebSocket closing handshake algorithm
eventually invokes the close the WebSocket connection
algorithm, which then establishes that the WebSocket connection
is closed, which fires the close event as described below.

↪↪↪↪ Otherwise
Set the readyState attribute's value to CLOSING (2).

Note: The WebSocket closing handshake is started, and will
eventually invoke the close the WebSocket connection algorithm,
which will establish that the WebSocket connection is closed,
and thus the close event will fire, as described below.

The bufferedAmount attribute must return the number of bytes of application data (UTF-8

text and binary data) that have been queued using send() but that, as of the last time the

event loop started executing a task, had not yet been transmitted to the network. (This thus
includes any text sent during the execution of the current task, regardless of whether the user
agent is able to transmit text asynchronously with script execution.) This does not include
framing overhead incurred by the protocol, or buffering done by the operating system or
network hardware. If the connection is closed, this attribute's value will only increase with each
call to the send() method (the number does not reset to zero once the connection closes).

In this simple example, the bufferedAmount attribute is used to ensure that updates

are sent either at the rate of one update every 50ms, if the network can handle that rate,
or at whatever rate the network can handle, if that is too fast.

var socket = new WebSocket

('ws://game.example.com:12010/updates');

socket.onopen = function () {

 setInterval(function() {

 if (socket.bufferedAmount == 0)

 socket.send(getUpdateData());

 }, 50);

};

The bufferedAmount attribute can also be used to saturate the network without

sending the data at a higher rate than the network can handle, though this requires more
careful monitoring of the value of the attribute over time.

When a WebSocket object is created, its binaryType IDL attribute must be set to the string

"blob". On getting, it must return the last value it was set to. On setting, the user agent must

set the IDL attribute to the new value.

Note: This attribute allows authors to control how binary data is exposed to
scripts. By setting the attribute to "blob", binary data is returned in Blob form;

by setting it to "arraybuffer", it is returned in ArrayBuffer form. User agents

can use this as a hint for how to handle incoming binary data: if the attribute is
set to "blob", it is safe to spool it to disk, and if it is set to "arraybuffer", it is

likely more efficient to keep the data in memory. Naturally, user agents are
encouraged to use more subtle heuristics to decide whether to keep incoming
data in memory or not, e.g. based on how big the data is or how common it is for
a script to change the attribute at the last minute. This latter aspect is important
in particular because it is quite possible for the attribute to be changed after the

Page 11 of 22

user agent has received the data but before the user agent has fired the event
for it.

The send(data) method transmits data using the connection. If the readyState attribute is

CONNECTING, it must throw an InvalidStateError exception. Otherwise, the user agent

must run the appropriate set of steps from the following list:

If the argument is a string
Let data be the result of converting the data argument to a sequence of Unicode
characters. If the WebSocket connection is established and the WebSocket closing
handshake has not yet started, then the user agent must send a WebSocket Message
comprised of data using a text frame opcode; if the data cannot be sent, e.g. because it
would need to be buffered but the buffer is full, the user agent must close the WebSocket
connection with prejudice. Any invocation of this method with a string argument that does
not throw an exception must increase the bufferedAmount attribute by the number of

bytes needed to express the argument as UTF-8. [UNICODE] [RFC3629] [WSP]

If the argument is a Blob object

If the WebSocket connection is established, and the WebSocket closing handshake has
not yet started, then the user agent must send a WebSocket Message comprised of data
using a binary frame opcode; if the data cannot be sent, e.g. because it would need to be
buffered but the buffer is full, the user agent must close the WebSocket connection with
prejudice. The data to be sent is the raw data represented by the Blob object. Any

invocation of this method with a Blob argument that does not throw an exception must

increase the bufferedAmount attribute by the size of the Blob object's raw data, in

bytes. [WSP] [FILEAPI]

If the argument is an ArrayBuffer object

If the WebSocket connection is established, and the WebSocket closing handshake has
not yet started, then the user agent must send a WebSocket Message comprised of data
using a binary frame opcode; if the data cannot be sent, e.g. because it would need to be
buffered but the buffer is full, the user agent must close the WebSocket connection with
prejudice. The data to be sent is the data stored in the buffer described by the
ArrayBuffer object. Any invocation of this method with an ArrayBuffer argument

that does not throw an exception must increase the bufferedAmount attribute by the

length of the ArrayBuffer in bytes. [WSP] [TYPEDARRAY]

If the argument is an ArrayBufferView object

If the WebSocket connection is established, and the WebSocket closing handshake has
not yet started, then the user agent must send a WebSocket Message comprised of data
using a binary frame opcode; if the data cannot be sent, e.g. because it would need to be
buffered but the buffer is full, the user agent must close the WebSocket connection with
prejudice. The data to be sent is the data stored in the section of the buffer described by
the ArrayBuffer object that the ArrayBufferView object references. Any invocation

of this method with an ArrayBufferView argument that does not throw an exception

must increase the bufferedAmount attribute by the length of the ArrayBufferView in

bytes. [WSP] [TYPEDARRAY]

The following are the event handlers (and their corresponding event handler event types) that
must be supported, as IDL attributes, by all objects implementing the WebSocket interface:

Event handler Event handler event type

onopen open

onmessage message

onerror error

Page 12 of 22

Event handler Event handler event type

onclose close

Page 13 of 22

5 Feedback from the protocol

When the WebSocket connection is established, the user agent must queue a task to run these
steps:

1. Change the readyState attribute's value to OPEN (1).

2. Change the extensions attribute's value to the extensions in use, if is not the null value.

[WSP]

3. Change the protocol attribute's value to the subprotocol in use, if is not the null value.

[WSP]

4. Act as if the user agent had received a set-cookie-string consisting of the cookies set
during the server's opening handshake, for the URL url given to the WebSocket()

constructor. [COOKIES] [RFC3629] [WSP]

5. Fire a simple event named open at the WebSocket object.

When a WebSocket message has been received with type type and data data, the user agent
must queue a task to follow these steps: [WSP]

1. If the readyState attribute's value is not OPEN (1), then abort these steps.

2. Let event be a newly created trusted event that uses the MessageEvent interface, with

the event type message, which does not bubble, is not cancelable, and has no default

action. [HTML]

3. Initialize event's origin attribute to the Unicode serialization of the origin of the URL that

was passed to the WebSocket object's constructor.

4. If type indicates that the data is Text, then initialize event's data attribute to data.

If type indicates that the data is Binary, and binaryType is set to "blob", then initialize

event's data attribute to a new Blob object that represents data as its raw data.

[FILEAPI]

If type indicates that the data is Binary, and binaryType is set to "arraybuffer", then

initialize event's data attribute to a new read-only ArrayBuffer object whose contents

are data. [TYPEDARRAY]

5. Dispatch event at the WebSocket object.

Note: User agents are encouraged to check if they can perform the above steps
efficiently before they run the task, picking tasks from other task queues while
they prepare the buffers if not. For example, if the binaryType attribute was set

to "blob" when the data arrived, and the user agent spooled all the data to disk,

but just before running the above task for this particular message the script
switched binaryType to "arraybuffer", the user agent would want to page the

data back to RAM before running this task so as to avoid stalling the main
thread while it created the ArrayBuffer object.

Here is an example of how to define a handler for the message event in the case of text

frames:

mysocket.onmessage = function (event) {

 if (event.data == 'on') {

Page 14 of 22

 turnLampOn();

 } else if (event.data == 'off') {

 turnLampOff();

 }

};

The protocol here is a trivial one, with the server just sending "on" or "off" messages.

When the WebSocket closing handshake is started, the user agent must queue a task to
change the readyState attribute's value to CLOSING (2). (If the close() method was called,

the readyState attribute's value will already be set to CLOSING (2) when this task runs.)

[WSP]

When the WebSocket connection is closed, possibly cleanly, the user agent must queue a task
to run the following substeps:

1. Change the readyState attribute's value to CLOSED (3).

2. If the user agent was required to fail the WebSocket connection or the WebSocket
connection is closed with prejudice, fire a simple event named error at the WebSocket

object. [WSP]

3. Create a trusted event that uses the CloseEvent interface, with the event type close,

which does not bubble, is not cancelable, has no default action, whose wasClean

attribute is initialized to true if the connection closed cleanly and false otherwise, whose
code attribute is initialized to the WebSocket connection close code, and whose reason

attribute is initialized to the result of applying the UTF-8 decoder to the WebSocket
connection close reason, and dispatch the event at the WebSocket object. [WSP]

User agents must not convey any failure information to scripts in a way that would allow
a script to distinguish the following situations:

• A server whose host name could not be resolved.

• A server to which packets could not successfully be routed.

• A server that refused the connection on the specified port.

• A server that failed to correctly perform a TLS handshake (e.g., the server
certificate can't be verified).

• A server that did not complete the opening handshake (e.g. because it was not a
WebSocket server).

• A WebSocket server that sent a correct opening handshake, but that specified
options that caused the client to drop the connection (e.g. the server specified a
subprotocol that the client did not offer).

• A WebSocket server that abruptly closed the connection after successfully
completing the opening handshake.

In all of these cases, the the WebSocket connection close code would be 1006, as
required by the WebSocket Protocol specification. [WSP]

Allowing a script to distinguish these cases would allow a script to probe the user's local
network in preparation for an attack.

Page 15 of 22

Note: In particular, this means the code 1015 is not used by the user agent
(unless the server erroneously uses it in its close frame, of course).

The task source for all tasks queued in this section is the WebSocket task source.

Page 16 of 22

6 Ping and Pong frames

The WebSocket protocol specification defines Ping and Pong frames that can be used for keep-
alive, heart-beats, network status probing, latency instrumentation, and so forth. These are not
currently exposed in the API.

User agents may send ping and unsolicited pong frames as desired, for example in an attempt
to maintain local network NAT mappings, to detect failed connections, or to display latency
metrics to the user. User agents must not use pings or unsolicited pongs to aid the server; it is
assumed that servers will solicit pongs whenever appropriate for the server's needs.

Page 17 of 22

7 Parsing WebSocket URLs

The steps to parse a WebSocket URL's components from a string url are as follows. These
steps return either a host, a port, a resource name, and a secure flag, or they fail.

1. If the url string is not an absolute URL, then fail this algorithm.

2. Resolve the url string, with the URL character encoding set to UTF-8. [RFC3629]

Note: It doesn't matter what it is resolved relative to, since we already know
it is an absolute URL at this point.

3. If the resulting parsed URL does not have a scheme component whose value is either
"ws" or "wss", then fail this algorithm.

4. If the resulting parsed URL has a non-null fragment component, then fail this algorithm.

5. If the scheme component of the resulting parsed URL is "ws", set secure to false;

otherwise, the scheme component is "wss", set secure to true.

6. Let host be the value of the resulting parsed URL's host component.

7. If the resulting parsed URL has a port component that is not the empty string, then let port
be that component's value; otherwise, there is no explicit port.

8. If there is no explicit port, then: if secure is false, let port be 80, otherwise let port be 443.

9. Let resource name be the value of the resulting parsed URL's path component (which
might be empty).

10. If resource name is the empty string, set it to a single character U+002F SOLIDUS (/).

11. If the resulting parsed URL has a non-null query component, then append a single
U+003F QUESTION MARK character (?) to resource name, followed by the value of the
query component.

12. Return host, port, resource name, and secure.

Page 18 of 22

8 Event definitions

The wasClean attribute must return the value it was initialized to. When the object is created,

this attribute must be initialized to false. It represents whether the connection closed cleanly or
not.

The code attribute must return the value it was initialized to. When the object is created, this

attribute must be initialized to zero. It represents the WebSocket connection close code
provided by the server.

The reason attribute must return the value it was initialized to. When the object is created, this

attribute must be initialized to empty string. It represents the WebSocket connection close
reason provided by the server.

[Constructor(DOMString type, optional CloseEventInit

eventInitDict)]

interface CloseEvent : Event {

 readonly attribute boolean wasClean;

 readonly attribute unsigned short code;

 readonly attribute DOMString reason;

};

dictionary CloseEventInit : EventInit {

 boolean wasClean;

 unsigned short code;

 DOMString reason;

};

IDL

Page 19 of 22

9 Garbage collection

A WebSocket object whose readyState attribute's value was set to CONNECTING (0) as of

the last time the event loop started executing a task must not be garbage collected if there are
any event listeners registered for open events, message events, error events, or close

events.

A WebSocket object whose readyState attribute's value was set to OPEN (1) as of the last

time the event loop started executing a task must not be garbage collected if there are any
event listeners registered for message events, error, or close events.

A WebSocket object whose readyState attribute's value was set to CLOSING (2) as of the

last time the event loop started executing a task must not be garbage collected if there are any
event listeners registered for error or close events.

A WebSocket object with an established connection that has data queued to be transmitted to

the network must not be garbage collected. [WSP]

If a WebSocket object is garbage collected while its connection is still open, the user agent

must start the WebSocket closing handshake, with no status code for the Close message.
[WSP]

If a user agent is to make disappear a WebSocket object (this happens when a Document

object goes away), the user agent must follow the first appropriate set of steps from the
following list:

↪↪↪↪ If the WebSocket connection is not yet established [WSP]
Fail the WebSocket connection. [WSP]

↪↪↪↪ If the WebSocket closing handshake has not yet been started [WSP]
Start the WebSocket closing handshake, with the status code to use in the
WebSocket Close message being 1001. [WSP]

↪↪↪↪ Otherwise
Do nothing.

Page 20 of 22

References

All references are normative unless marked "Non-normative".

[COOKIES]
HTTP State Management Mechanism, A. Barth. IETF.

[DOM]
DOM, A. van Kesteren, A. Gregor, Ms2ger. WHATWG.

[FILEAPI]
File API, A. Ranganathan. W3C.

[HTML]
HTML, I. Hickson. WHATWG.

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner. IETF.

[RFC3629]
UTF-8, a transformation format of ISO 10646, F. Yergeau. IETF.

[TYPEDARRAY]
Typed Array Specification, D. Herman, K. Russell. Khronos.

[UNICODE]
The Unicode Standard. Unicode Consortium.

[WEBIDL]
Web IDL, C. McCormack. W3C.

[WSP]
The WebSocket protocol, I. Fette, A. Melnikov. IETF.

Page 21 of 22

Acknowledgements

For a full list of acknowledgements, please see the HTML specification. [HTML]

Page 22 of 22

