
The WebSocket Protocol

RFC 6455

Document type: RFC - Proposed Standard (IETF Stream)

Was draft-ietf-hybi-thewebsocketprotocol

Errata

Published: 2011-12

Other versions: plain text, pdf, html

IPR Disclosures | Dependencies to this RFC

Internet Engineering Task Force (IETF) I. Fette
Request for Comments: 6455 Google, Inc.

Category: Standards Track A. Melnikov
ISSN: 2070-1721 Isode Ltd.

 December 2011

 The WebSocket Protocol

Abstract

 The WebSocket Protocol enables two-way communication between a client
 running untrusted code in a controlled environment to a remote host

 that has opted-in to communications from that code. The security
 model used for this is the origin-based security model commonly used

 by web browsers. The protocol consists of an opening handshake

 followed by basic message framing, layered over TCP. The goal of
 this technology is to provide a mechanism for browser-based

 applications that need two-way communication with servers that does
 not rely on opening multiple HTTP connections (e.g., using

 XMLHttpRequest or <iframe>s and long polling).

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has

 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on

 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,

 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6455.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

Fette & Melnikov Standards Track [Page 1]
RFC 6455 The WebSocket Protocol December 2011

Document IESG Evaluation Record IESG Writeups History

Page 1 of 53

 6. Sending and Receiving Data 39
 6.1. Sending Data . 39

 6.2. Receiving Data . 40

 7. Closing the Connection . 41
 7.1. Definitions . 41

 7.1.1. Close the WebSocket Connection 41
 7.1.2. Start the WebSocket Closing Handshake 42

 7.1.3. The WebSocket Closing Handshake is Started 42

 7.1.4. The WebSocket Connection is Closed 42
 7.1.5. The WebSocket Connection Close Code 42

Fette & Melnikov Standards Track [Page 2]

RFC 6455 The WebSocket Protocol December 2011

 7.1.6. The WebSocket Connection Close Reason 43

 7.1.7. Fail the WebSocket Connection 43
 7.2. Abnormal Closures . 44

 7.2.1. Client-Initiated Closure 44

 7.2.2. Server-Initiated Closure 44
 7.2.3. Recovering from Abnormal Closure 44

 7.3. Normal Closure of Connections 45
 7.4. Status Codes . 45

 7.4.1. Defined Status Codes 45

 7.4.2. Reserved Status Code Ranges 47
 8. Error Handling . 48

 8.1. Handling Errors in UTF-8-Encoded Data 48
 9. Extensions . 48

 9.1. Negotiating Extensions 48

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4

 1.1. Background . 4
 1.2. Protocol Overview . 5

 1.3. Opening Handshake . 6

 1.4. Closing Handshake . 9
 1.5. Design Philosophy . 9

 1.6. Security Model . 10
 1.7. Relationship to TCP and HTTP 11

 1.8. Establishing a Connection 11

 1.9. Subprotocols Using the WebSocket Protocol 12
 2. Conformance Requirements 12

 2.1. Terminology and Other Conventions 13
 3. WebSocket URIs . 14

 4. Opening Handshake . 14

 4.1. Client Requirements 14
 4.2. Server-Side Requirements 20

 4.2.1. Reading the Client's Opening Handshake 21
 4.2.2. Sending the Server's Opening Handshake 22

 4.3. Collected ABNF for New Header Fields Used in Handshake . . 25

 4.4. Supporting Multiple Versions of WebSocket Protocol 26
 5. Data Framing . 27

 5.1. Overview . 27
 5.2. Base Framing Protocol 28

 5.3. Client-to-Server Masking 32

 5.4. Fragmentation . 33
 5.5. Control Frames . 36

 5.5.1. Close . 36
 5.5.2. Ping . 37

 5.5.3. Pong . 37

 5.6. Data Frames . 38
 5.7. Examples . 38

 5.8. Extensibility . 39

Page 2 of 53

 9.2. Known Extensions . 50
 10. Security Considerations 50

 10.1. Non-Browser Clients 50
 10.2. Origin Considerations 50

 10.3. Attacks On Infrastructure (Masking) 51

 10.4. Implementation-Specific Limits 52
 10.5. WebSocket Client Authentication 53

 10.6. Connection Confidentiality and Integrity 53
 10.7. Handling of Invalid Data 53

 10.8. Use of SHA-1 by the WebSocket Handshake 54

 11. IANA Considerations . 54
 11.1. Registration of New URI Schemes 54

 11.1.1. Registration of "ws" Scheme 54
 11.1.2. Registration of "wss" Scheme 55

 11.2. Registration of the "WebSocket" HTTP Upgrade Keyword . . . 56

 11.3. Registration of New HTTP Header Fields 57
 11.3.1. Sec-WebSocket-Key 57

 11.3.2. Sec-WebSocket-Extensions 58
 11.3.3. Sec-WebSocket-Accept 58

 11.3.4. Sec-WebSocket-Protocol 59

 11.3.5. Sec-WebSocket-Version 60
 11.4. WebSocket Extension Name Registry 61

 11.5. WebSocket Subprotocol Name Registry 61
 11.6. WebSocket Version Number Registry 62

 11.7. WebSocket Close Code Number Registry 64

 11.8. WebSocket Opcode Registry 65
 11.9. WebSocket Framing Header Bits Registry 66

 12. Using the WebSocket Protocol from Other Specifications 66
 13. Acknowledgements . 67

 14. References . 68

 14.1. Normative References 68
 14.2. Informative References 69

Fette & Melnikov Standards Track [Page 3]

RFC 6455 The WebSocket Protocol December 2011

1. Introduction

1.1. Background

 This section is non-normative.

 Historically, creating web applications that need bidirectional
 communication between a client and a server (e.g., instant messaging

 and gaming applications) has required an abuse of HTTP to poll the

 server for updates while sending upstream notifications as distinct
 HTTP calls [RFC6202].

 This results in a variety of problems:

 o The server is forced to use a number of different underlying TCP
 connections for each client: one for sending information to the

 client and a new one for each incoming message.

 o The wire protocol has a high overhead, with each client-to-server

 message having an HTTP header.

 o The client-side script is forced to maintain a mapping from the
 outgoing connections to the incoming connection to track replies.

 A simpler solution would be to use a single TCP connection for
 traffic in both directions. This is what the WebSocket Protocol

 provides. Combined with the WebSocket API [WSAPI], it provides an
 alternative to HTTP polling for two-way communication from a web page

 to a remote server.

 The same technique can be used for a variety of web applications:

Page 3 of 53

 games, stock tickers, multiuser applications with simultaneous
 editing, user interfaces exposing server-side services in real time,

 etc.

 The WebSocket Protocol is designed to supersede existing

 bidirectional communication technologies that use HTTP as a transport
 layer to benefit from existing infrastructure (proxies, filtering,

 authentication). Such technologies were implemented as trade-offs
 between efficiency and reliability because HTTP was not initially

 meant to be used for bidirectional communication (see [RFC6202] for

 further discussion). The WebSocket Protocol attempts to address the
 goals of existing bidirectional HTTP technologies in the context of

 the existing HTTP infrastructure; as such, it is designed to work
 over HTTP ports 80 and 443 as well as to support HTTP proxies and

 intermediaries, even if this implies some complexity specific to the

 current environment. However, the design does not limit WebSocket to
 HTTP, and future implementations could use a simpler handshake over a

Fette & Melnikov Standards Track [Page 4]

RFC 6455 The WebSocket Protocol December 2011

 dedicated port without reinventing the entire protocol. This last

 point is important because the traffic patterns of interactive
 messaging do not closely match standard HTTP traffic and can induce

 unusual loads on some components.

1.2. Protocol Overview

 This section is non-normative.

 The protocol has two parts: a handshake and the data transfer.

 The handshake from the client looks as follows:

 GET /chat HTTP/1.1

 Host: server.example.com
 Upgrade: websocket

 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

 Origin: http://example.com

 Sec-WebSocket-Protocol: chat, superchat
 Sec-WebSocket-Version: 13

 The handshake from the server looks as follows:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket

 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

 Sec-WebSocket-Protocol: chat

 The leading line from the client follows the Request-Line format.

 The leading line from the server follows the Status-Line format. The
 Request-Line and Status-Line productions are defined in [RFC2616].

 An unordered set of header fields comes after the leading line in
 both cases. The meaning of these header fields is specified in

 Section 4 of this document. Additional header fields may also be
 present, such as cookies [RFC6265]. The format and parsing of

 headers is as defined in [RFC2616].

 Once the client and server have both sent their handshakes, and if

 the handshake was successful, then the data transfer part starts.
 This is a two-way communication channel where each side can,

 independently from the other, send data at will.

 After a successful handshake, clients and servers transfer data back

Page 4 of 53

 and forth in conceptual units referred to in this specification as
 "messages". On the wire, a message is composed of one or more

Fette & Melnikov Standards Track [Page 5]

RFC 6455 The WebSocket Protocol December 2011

 frames. The WebSocket message does not necessarily correspond to a

 particular network layer framing, as a fragmented message may be
 coalesced or split by an intermediary.

 A frame has an associated type. Each frame belonging to the same
 message contains the same type of data. Broadly speaking, there are

 types for textual data (which is interpreted as UTF-8 [RFC3629]
 text), binary data (whose interpretation is left up to the

 application), and control frames (which are not intended to carry

 data for the application but instead for protocol-level signaling,
 such as to signal that the connection should be closed). This

 version of the protocol defines six frame types and leaves ten
 reserved for future use.

1.3. Opening Handshake

 This section is non-normative.

 The opening handshake is intended to be compatible with HTTP-based

 server-side software and intermediaries, so that a single port can be
 used by both HTTP clients talking to that server and WebSocket

 clients talking to that server. To this end, the WebSocket client's
 handshake is an HTTP Upgrade request:

 GET /chat HTTP/1.1
 Host: server.example.com

 Upgrade: websocket
 Connection: Upgrade

 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

 Origin: http://example.com
 Sec-WebSocket-Protocol: chat, superchat

 Sec-WebSocket-Version: 13

 In compliance with [RFC2616], header fields in the handshake may be

 sent by the client in any order, so the order in which different
 header fields are received is not significant.

 The "Request-URI" of the GET method [RFC2616] is used to identify the

 endpoint of the WebSocket connection, both to allow multiple domains

 to be served from one IP address and to allow multiple WebSocket
 endpoints to be served by a single server.

 The client includes the hostname in the |Host| header field of its

 handshake as per [RFC2616], so that both the client and the server

 can verify that they agree on which host is in use.

Fette & Melnikov Standards Track [Page 6]
RFC 6455 The WebSocket Protocol December 2011

 Additional header fields are used to select options in the WebSocket
 Protocol. Typical options available in this version are the

 subprotocol selector (|Sec-WebSocket-Protocol|), list of extensions
 support by the client (|Sec-WebSocket-Extensions|), |Origin| header

 field, etc. The |Sec-WebSocket-Protocol| request-header field can be

 used to indicate what subprotocols (application-level protocols
 layered over the WebSocket Protocol) are acceptable to the client.

 The server selects one or none of the acceptable protocols and echoes
 that value in its handshake to indicate that it has selected that

 protocol.

 Sec-WebSocket-Protocol: chat

Page 5 of 53

 The |Origin| header field [RFC6454] is used to protect against

 unauthorized cross-origin use of a WebSocket server by scripts using
 the WebSocket API in a web browser. The server is informed of the

 script origin generating the WebSocket connection request. If the

 server does not wish to accept connections from this origin, it can
 choose to reject the connection by sending an appropriate HTTP error

 code. This header field is sent by browser clients; for non-browser
 clients, this header field may be sent if it makes sense in the

 context of those clients.

 Finally, the server has to prove to the client that it received the

 client's WebSocket handshake, so that the server doesn't accept
 connections that are not WebSocket connections. This prevents an

 attacker from tricking a WebSocket server by sending it carefully

 crafted packets using XMLHttpRequest [XMLHttpRequest] or a form
 submission.

 To prove that the handshake was received, the server has to take two

 pieces of information and combine them to form a response. The first

 piece of information comes from the |Sec-WebSocket-Key| header field
 in the client handshake:

 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

 For this header field, the server has to take the value (as present
 in the header field, e.g., the base64-encoded [RFC4648] version minus

 any leading and trailing whitespace) and concatenate this with the
 Globally Unique Identifier (GUID, [RFC4122]) "258EAFA5-E914-47DA-

 95CA-C5AB0DC85B11" in string form, which is unlikely to be used by

 network endpoints that do not understand the WebSocket Protocol. A
 SHA-1 hash (160 bits) [FIPS.180-3], base64-encoded (see Section 4 of

 [RFC4648]), of this concatenation is then returned in the server's
 handshake.

Fette & Melnikov Standards Track [Page 7]
RFC 6455 The WebSocket Protocol December 2011

 Concretely, if as in the example above, the |Sec-WebSocket-Key|

 header field had the value "dGhlIHNhbXBsZSBub25jZQ==", the server

 would concatenate the string "258EAFA5-E914-47DA-95CA-C5AB0DC85B11"
 to form the string "dGhlIHNhbXBsZSBub25jZQ==258EAFA5-E914-47DA-95CA-

 C5AB0DC85B11". The server would then take the SHA-1 hash of this,
 giving the value 0xb3 0x7a 0x4f 0x2c 0xc0 0x62 0x4f 0x16 0x90 0xf6

 0x46 0x06 0xcf 0x38 0x59 0x45 0xb2 0xbe 0xc4 0xea. This value is

 then base64-encoded (see Section 4 of [RFC4648]), to give the value
 "s3pPLMBiTxaQ9kYGzzhZRbK+xOo=". This value would then be echoed in

 the |Sec-WebSocket-Accept| header field.

 The handshake from the server is much simpler than the client

 handshake. The first line is an HTTP Status-Line, with the status
 code 101:

 HTTP/1.1 101 Switching Protocols

 Any status code other than 101 indicates that the WebSocket handshake
 has not completed and that the semantics of HTTP still apply. The

 headers follow the status code.

 The |Connection| and |Upgrade| header fields complete the HTTP

 Upgrade. The |Sec-WebSocket-Accept| header field indicates whether
 the server is willing to accept the connection. If present, this

 header field must include a hash of the client's nonce sent in
 |Sec-WebSocket-Key| along with a predefined GUID. Any other value

 must not be interpreted as an acceptance of the connection by the

 server.

Page 6 of 53

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket

 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

 These fields are checked by the WebSocket client for scripted pages.
 If the |Sec-WebSocket-Accept| value does not match the expected

 value, if the header field is missing, or if the HTTP status code is
 not 101, the connection will not be established, and WebSocket frames

 will not be sent.

 Option fields can also be included. In this version of the protocol,

 the main option field is |Sec-WebSocket-Protocol|, which indicates
 the subprotocol that the server has selected. WebSocket clients

 verify that the server included one of the values that was specified

 in the WebSocket client's handshake. A server that speaks multiple
 subprotocols has to make sure it selects one based on the client's

 handshake and specifies it in its handshake.

Fette & Melnikov Standards Track [Page 8]

RFC 6455 The WebSocket Protocol December 2011

 Sec-WebSocket-Protocol: chat

 The server can also set cookie-related option fields to _set_

 cookies, as described in [RFC6265].

1.4. Closing Handshake

 This section is non-normative.

 The closing handshake is far simpler than the opening handshake.

 Either peer can send a control frame with data containing a specified

 control sequence to begin the closing handshake (detailed in

 Section 5.5.1). Upon receiving such a frame, the other peer sends a
 Close frame in response, if it hasn't already sent one. Upon

 receiving _that_ control frame, the first peer then closes the
 connection, safe in the knowledge that no further data is

 forthcoming.

 After sending a control frame indicating the connection should be

 closed, a peer does not send any further data; after receiving a
 control frame indicating the connection should be closed, a peer

 discards any further data received.

 It is safe for both peers to initiate this handshake simultaneously.

 The closing handshake is intended to complement the TCP closing

 handshake (FIN/ACK), on the basis that the TCP closing handshake is

 not always reliable end-to-end, especially in the presence of
 intercepting proxies and other intermediaries.

 By sending a Close frame and waiting for a Close frame in response,

 certain cases are avoided where data may be unnecessarily lost. For

 instance, on some platforms, if a socket is closed with data in the
 receive queue, a RST packet is sent, which will then cause recv() to

 fail for the party that received the RST, even if there was data
 waiting to be read.

1.5. Design Philosophy

 This section is non-normative.

 The WebSocket Protocol is designed on the principle that there should

 be minimal framing (the only framing that exists is to make the
 protocol frame-based instead of stream-based and to support a

Page 7 of 53

 distinction between Unicode text and binary frames). It is expected
 that metadata would be layered on top of WebSocket by the application

Fette & Melnikov Standards Track [Page 9]

RFC 6455 The WebSocket Protocol December 2011

 layer, in the same way that metadata is layered on top of TCP by the

 application layer (e.g., HTTP).

 Conceptually, WebSocket is really just a layer on top of TCP that

 does the following:

 o adds a web origin-based security model for browsers

 o adds an addressing and protocol naming mechanism to support

 multiple services on one port and multiple host names on one IP
 address

 o layers a framing mechanism on top of TCP to get back to the IP

 packet mechanism that TCP is built on, but without length limits

 o includes an additional closing handshake in-band that is designed

 to work in the presence of proxies and other intermediaries

 Other than that, WebSocket adds nothing. Basically it is intended to

 be as close to just exposing raw TCP to script as possible given the
 constraints of the Web. It's also designed in such a way that its

 servers can share a port with HTTP servers, by having its handshake
 be a valid HTTP Upgrade request. One could conceptually use other

 protocols to establish client-server messaging, but the intent of

 WebSockets is to provide a relatively simple protocol that can
 coexist with HTTP and deployed HTTP infrastructure (such as proxies)

 and that is as close to TCP as is safe for use with such
 infrastructure given security considerations, with targeted additions

 to simplify usage and keep simple things simple (such as the addition

 of message semantics).

 The protocol is intended to be extensible; future versions will
 likely introduce additional concepts such as multiplexing.

1.6. Security Model

 This section is non-normative.

 The WebSocket Protocol uses the origin model used by web browsers to

 restrict which web pages can contact a WebSocket server when the
 WebSocket Protocol is used from a web page. Naturally, when the

 WebSocket Protocol is used by a dedicated client directly (i.e., not
 from a web page through a web browser), the origin model is not

 useful, as the client can provide any arbitrary origin string.

 This protocol is intended to fail to establish a connection with

 servers of pre-existing protocols like SMTP [RFC5321] and HTTP, while
 allowing HTTP servers to opt-in to supporting this protocol if

Fette & Melnikov Standards Track [Page 10]
RFC 6455 The WebSocket Protocol December 2011

 desired. This is achieved by having a strict and elaborate handshake

 and by limiting the data that can be inserted into the connection

 before the handshake is finished (thus limiting how much the server
 can be influenced).

 It is similarly intended to fail to establish a connection when data

 from other protocols, especially HTTP, is sent to a WebSocket server,

 for example, as might happen if an HTML "form" were submitted to a
 WebSocket server. This is primarily achieved by requiring that the

Page 8 of 53

 server prove that it read the handshake, which it can only do if the
 handshake contains the appropriate parts, which can only be sent by a

 WebSocket client. In particular, at the time of writing of this
 specification, fields starting with |Sec-| cannot be set by an

 attacker from a web browser using only HTML and JavaScript APIs such

 as XMLHttpRequest [XMLHttpRequest].

1.7. Relationship to TCP and HTTP

 This section is non-normative.

 The WebSocket Protocol is an independent TCP-based protocol. Its

 only relationship to HTTP is that its handshake is interpreted by
 HTTP servers as an Upgrade request.

 By default, the WebSocket Protocol uses port 80 for regular WebSocket
 connections and port 443 for WebSocket connections tunneled over

 Transport Layer Security (TLS) [RFC2818].

1.8. Establishing a Connection

 This section is non-normative.

 When a connection is to be made to a port that is shared by an HTTP

 server (a situation that is quite likely to occur with traffic to

 ports 80 and 443), the connection will appear to the HTTP server to
 be a regular GET request with an Upgrade offer. In relatively simple

 setups with just one IP address and a single server for all traffic
 to a single hostname, this might allow a practical way for systems

 based on the WebSocket Protocol to be deployed. In more elaborate

 setups (e.g., with load balancers and multiple servers), a dedicated
 set of hosts for WebSocket connections separate from the HTTP servers

 is probably easier to manage. At the time of writing of this
 specification, it should be noted that connections on ports 80 and

 443 have significantly different success rates, with connections on

 port 443 being significantly more likely to succeed, though this may
 change with time.

Fette & Melnikov Standards Track [Page 11]

RFC 6455 The WebSocket Protocol December 2011

1.9. Subprotocols Using the WebSocket Protocol

 This section is non-normative.

 The client can request that the server use a specific subprotocol by
 including the |Sec-WebSocket-Protocol| field in its handshake. If it

 is specified, the server needs to include the same field and one of
 the selected subprotocol values in its response for the connection to

 be established.

 These subprotocol names should be registered as per Section 11.5. To

 avoid potential collisions, it is recommended to use names that
 contain the ASCII version of the domain name of the subprotocol's

 originator. For example, if Example Corporation were to create a

 Chat subprotocol to be implemented by many servers around the Web,
 they could name it "chat.example.com". If the Example Organization

 called their competing subprotocol "chat.example.org", then the two
 subprotocols could be implemented by servers simultaneously, with the

 server dynamically selecting which subprotocol to use based on the

 value sent by the client.

 Subprotocols can be versioned in backward-incompatible ways by
 changing the subprotocol name, e.g., going from

 "bookings.example.net" to "v2.bookings.example.net". These

 subprotocols would be considered completely separate by WebSocket
 clients. Backward-compatible versioning can be implemented by

Page 9 of 53

 reusing the same subprotocol string but carefully designing the
 actual subprotocol to support this kind of extensibility.

2. Conformance Requirements

 All diagrams, examples, and notes in this specification are non-
 normative, as are all sections explicitly marked non-normative.

 Everything else in this specification is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Requirements phrased in the imperative as part of algorithms (such as

 "strip any leading space characters" or "return false and abort these

 steps") are to be interpreted with the meaning of the key word
 ("MUST", "SHOULD", "MAY", etc.) used in introducing the algorithm.

Fette & Melnikov Standards Track [Page 12]

RFC 6455 The WebSocket Protocol December 2011

 Conformance requirements phrased as algorithms or specific steps MAY

 be implemented in any manner, so long as the end result is
 equivalent. (In particular, the algorithms defined in this

 specification are intended to be easy to follow and not intended to

 be performant.)

2.1. Terminology and Other Conventions

 ASCII shall mean the character-encoding scheme defined in

 [ANSI.X3-4.1986].

 This document makes reference to UTF-8 values and uses UTF-8
 notational formats as defined in STD 63 [RFC3629].

 Key terms such as named algorithms or definitions are indicated like
 this.

 Names of header fields or variables are indicated like |this|.

 Variable values are indicated like /this/.

 This document references the procedure to _Fail the WebSocket
 Connection_. This procedure is defined in Section 7.1.7.

 Converting a string to ASCII lowercase means replacing all
 characters in the range U+0041 to U+005A (i.e., LATIN CAPITAL LETTER

 A to LATIN CAPITAL LETTER Z) with the corresponding characters in the
 range U+0061 to U+007A (i.e., LATIN SMALL LETTER A to LATIN SMALL

 LETTER Z).

 Comparing two strings in an _ASCII case-insensitive_ manner means

 comparing them exactly, code point for code point, except that the
 characters in the range U+0041 to U+005A (i.e., LATIN CAPITAL LETTER

 A to LATIN CAPITAL LETTER Z) and the corresponding characters in the

 range U+0061 to U+007A (i.e., LATIN SMALL LETTER A to LATIN SMALL
 LETTER Z) are considered to also match.

 The term "URI" is used in this document as defined in [RFC3986].

 When an implementation is required to _send_ data as part of the
 WebSocket Protocol, the implementation MAY delay the actual

 transmission arbitrarily, e.g., buffering data so as to send fewer IP
 packets.

 Note that this document uses both [RFC5234] and [RFC2616] variants of
 ABNF in different sections.

Page 10 of 53

Fette & Melnikov Standards Track [Page 13]

RFC 6455 The WebSocket Protocol December 2011

3. WebSocket URIs

 This specification defines two URI schemes, using the ABNF syntax

 defined in RFC 5234 [RFC5234], and terminology and ABNF productions
 defined by the URI specification RFC 3986 [RFC3986].

 ws-URI = "ws:" "//" host [":" port] path ["?" query]
 wss-URI = "wss:" "//" host [":" port] path ["?" query]

 host = <host, defined in [RFC3986], Section 3.2.2>

 port = <port, defined in [RFC3986], Section 3.2.3>

 path = <path-abempty, defined in [RFC3986], Section 3.3>
 query = <query, defined in [RFC3986], Section 3.4>

 The port component is OPTIONAL; the default for "ws" is port 80,

 while the default for "wss" is port 443.

 The URI is called "secure" (and it is said that "the secure flag is

 set") if the scheme component matches "wss" case-insensitively.

 The "resource-name" (also known as /resource name/ in Section 4.1)

 can be constructed by concatenating the following:

 o "/" if the path component is empty

 o the path component

 o "?" if the query component is non-empty

 o the query component

 Fragment identifiers are meaningless in the context of WebSocket URIs
 and MUST NOT be used on these URIs. As with any URI scheme, the

 character "#", when not indicating the start of a fragment, MUST be
 escaped as %23.

4. Opening Handshake

4.1. Client Requirements

 To _Establish a WebSocket Connection_, a client opens a connection

 and sends a handshake as defined in this section. A connection is
 defined to initially be in a CONNECTING state. A client will need to

 supply a /host/, /port/, /resource name/, and a /secure/ flag, which
 are the components of a WebSocket URI as discussed in Section 3,

 along with a list of /protocols/ and /extensions/ to be used.

 Additionally, if the client is a web browser, it supplies /origin/.

Fette & Melnikov Standards Track [Page 14]
RFC 6455 The WebSocket Protocol December 2011

 Clients running in controlled environments, e.g., browsers on mobile
 handsets tied to specific carriers, MAY offload the management of the

 connection to another agent on the network. In such a situation, the
 client for the purposes of this specification is considered to

 include both the handset software and any such agents.

 When the client is to _Establish a WebSocket Connection_ given a set

 of (/host/, /port/, /resource name/, and /secure/ flag), along with a
 list of /protocols/ and /extensions/ to be used, and an /origin/ in

 the case of web browsers, it MUST open a connection, send an opening

 handshake, and read the server's handshake in response. The exact
 requirements of how the connection should be opened, what should be

Page 11 of 53

 sent in the opening handshake, and how the server's response should
 be interpreted are as follows in this section. In the following

 text, we will use terms from Section 3, such as "/host/" and
 "/secure/ flag" as defined in that section.

 1. The components of the WebSocket URI passed into this algorithm
 (/host/, /port/, /resource name/, and /secure/ flag) MUST be

 valid according to the specification of WebSocket URIs specified
 in Section 3. If any of the components are invalid, the client

 MUST _Fail the WebSocket Connection_ and abort these steps.

 2. If the client already has a WebSocket connection to the remote

 host (IP address) identified by /host/ and port /port/ pair, even
 if the remote host is known by another name, the client MUST wait

 until that connection has been established or for that connection

 to have failed. There MUST be no more than one connection in a
 CONNECTING state. If multiple connections to the same IP address

 are attempted simultaneously, the client MUST serialize them so
 that there is no more than one connection at a time running

 through the following steps.

 If the client cannot determine the IP address of the remote host

 (for example, because all communication is being done through a
 proxy server that performs DNS queries itself), then the client

 MUST assume for the purposes of this step that each host name

 refers to a distinct remote host, and instead the client SHOULD
 limit the total number of simultaneous pending connections to a

 reasonably low number (e.g., the client might allow simultaneous
 pending connections to a.example.com and b.example.com, but if

 thirty simultaneous connections to a single host are requested,

 that may not be allowed). For example, in a web browser context,
 the client needs to consider the number of tabs the user has open

 in setting a limit to the number of simultaneous pending
 connections.

Fette & Melnikov Standards Track [Page 15]
RFC 6455 The WebSocket Protocol December 2011

 NOTE: This makes it harder for a script to perform a denial-of-

 service attack by just opening a large number of WebSocket

 connections to a remote host. A server can further reduce the
 load on itself when attacked by pausing before closing the

 connection, as that will reduce the rate at which the client
 reconnects.

 NOTE: There is no limit to the number of established WebSocket
 connections a client can have with a single remote host. Servers

 can refuse to accept connections from hosts/IP addresses with an
 excessive number of existing connections or disconnect resource-

 hogging connections when suffering high load.

 3. _Proxy Usage_: If the client is configured to use a proxy when

 using the WebSocket Protocol to connect to host /host/ and port
 /port/, then the client SHOULD connect to that proxy and ask it

 to open a TCP connection to the host given by /host/ and the port

 given by /port/.

 EXAMPLE: For example, if the client uses an HTTP proxy for all
 traffic, then if it was to try to connect to port 80 on server

 example.com, it might send the following lines to the proxy

 server:

 CONNECT example.com:80 HTTP/1.1
 Host: example.com

 If there was a password, the connection might look like:

Page 12 of 53

 CONNECT example.com:80 HTTP/1.1
 Host: example.com

 Proxy-authorization: Basic ZWRuYW1vZGU6bm9jYXBlcyE=

 If the client is not configured to use a proxy, then a direct TCP

 connection SHOULD be opened to the host given by /host/ and the
 port given by /port/.

 NOTE: Implementations that do not expose explicit UI for

 selecting a proxy for WebSocket connections separate from other

 proxies are encouraged to use a SOCKS5 [RFC1928] proxy for
 WebSocket connections, if available, or failing that, to prefer

 the proxy configured for HTTPS connections over the proxy
 configured for HTTP connections.

 For the purpose of proxy autoconfiguration scripts, the URI to
 pass the function MUST be constructed from /host/, /port/,

 /resource name/, and the /secure/ flag using the definition of a
 WebSocket URI as given in Section 3.

Fette & Melnikov Standards Track [Page 16]
RFC 6455 The WebSocket Protocol December 2011

 NOTE: The WebSocket Protocol can be identified in proxy

 autoconfiguration scripts from the scheme ("ws" for unencrypted

 connections and "wss" for encrypted connections).

 4. If the connection could not be opened, either because a direct
 connection failed or because any proxy used returned an error,

 then the client MUST _Fail the WebSocket Connection_ and abort

 the connection attempt.

 5. If /secure/ is true, the client MUST perform a TLS handshake over
 the connection after opening the connection and before sending

 the handshake data [RFC2818]. If this fails (e.g., the server's

 certificate could not be verified), then the client MUST _Fail
 the WebSocket Connection_ and abort the connection. Otherwise,

 all further communication on this channel MUST run through the
 encrypted tunnel [RFC5246].

 Clients MUST use the Server Name Indication extension in the TLS
 handshake [RFC6066].

 Once a connection to the server has been established (including a

 connection via a proxy or over a TLS-encrypted tunnel), the client

 MUST send an opening handshake to the server. The handshake consists
 of an HTTP Upgrade request, along with a list of required and

 optional header fields. The requirements for this handshake are as
 follows.

 1. The handshake MUST be a valid HTTP request as specified by
 [RFC2616].

 2. The method of the request MUST be GET, and the HTTP version MUST

 be at least 1.1.

 For example, if the WebSocket URI is "ws://example.com/chat",

 the first line sent should be "GET /chat HTTP/1.1".

 3. The "Request-URI" part of the request MUST match the /resource

 name/ defined in Section 3 (a relative URI) or be an absolute
 http/https URI that, when parsed, has a /resource name/, /host/,

 and /port/ that match the corresponding ws/wss URI.

 4. The request MUST contain a |Host| header field whose value

 contains /host/ plus optionally ":" followed by /port/ (when not
 using the default port).

Page 13 of 53

 5. The request MUST contain an |Upgrade| header field whose value

 MUST include the "websocket" keyword.

Fette & Melnikov Standards Track [Page 17]

RFC 6455 The WebSocket Protocol December 2011

 6. The request MUST contain a |Connection| header field whose value
 MUST include the "Upgrade" token.

 7. The request MUST include a header field with the name
 |Sec-WebSocket-Key|. The value of this header field MUST be a

 nonce consisting of a randomly selected 16-byte value that has
 been base64-encoded (see Section 4 of [RFC4648]). The nonce

 MUST be selected randomly for each connection.

 NOTE: As an example, if the randomly selected value was the

 sequence of bytes 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09
 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f 0x10, the value of the header

 field would be "AQIDBAUGBwgJCgsMDQ4PEC=="

 8. The request MUST include a header field with the name |Origin|

 [RFC6454] if the request is coming from a browser client. If
 the connection is from a non-browser client, the request MAY

 include this header field if the semantics of that client match

 the use-case described here for browser clients. The value of
 this header field is the ASCII serialization of origin of the

 context in which the code establishing the connection is
 running. See [RFC6454] for the details of how this header field

 value is constructed.

 As an example, if code downloaded from www.example.com attempts

 to establish a connection to ww2.example.com, the value of the
 header field would be "http://www.example.com".

 9. The request MUST include a header field with the name
 |Sec-WebSocket-Version|. The value of this header field MUST be

 13.

 NOTE: Although draft versions of this document (-09, -10, -11,

 and -12) were posted (they were mostly comprised of editorial
 changes and clarifications and not changes to the wire

 protocol), values 9, 10, 11, and 12 were not used as valid
 values for Sec-WebSocket-Version. These values were reserved in

 the IANA registry but were not and will not be used.

 10. The request MAY include a header field with the name

 |Sec-WebSocket-Protocol|. If present, this value indicates one
 or more comma-separated subprotocol the client wishes to speak,

 ordered by preference. The elements that comprise this value

 MUST be non-empty strings with characters in the range U+0021 to
 U+007E not including separator characters as defined in

 [RFC2616] and MUST all be unique strings. The ABNF for the
 value of this header field is 1#token, where the definitions of

 constructs and rules are as given in [RFC2616].

Fette & Melnikov Standards Track [Page 18]

RFC 6455 The WebSocket Protocol December 2011

 11. The request MAY include a header field with the name

 |Sec-WebSocket-Extensions|. If present, this value indicates
 the protocol-level extension(s) the client wishes to speak. The

 interpretation and format of this header field is described in
 Section 9.1.

 12. The request MAY include any other header fields, for example,
 cookies [RFC6265] and/or authentication-related header fields

Page 14 of 53

 such as the |Authorization| header field [RFC2616], which are
 processed according to documents that define them.

 Once the client's opening handshake has been sent, the client MUST

 wait for a response from the server before sending any further data.

 The client MUST validate the server's response as follows:

 1. If the status code received from the server is not 101, the
 client handles the response per HTTP [RFC2616] procedures. In

 particular, the client might perform authentication if it

 receives a 401 status code; the server might redirect the client
 using a 3xx status code (but clients are not required to follow

 them), etc. Otherwise, proceed as follows.

 2. If the response lacks an |Upgrade| header field or the |Upgrade|

 header field contains a value that is not an ASCII case-
 insensitive match for the value "websocket", the client MUST

 Fail the WebSocket Connection.

 3. If the response lacks a |Connection| header field or the

 |Connection| header field doesn't contain a token that is an
 ASCII case-insensitive match for the value "Upgrade", the client

 MUST _Fail the WebSocket Connection_.

 4. If the response lacks a |Sec-WebSocket-Accept| header field or

 the |Sec-WebSocket-Accept| contains a value other than the
 base64-encoded SHA-1 of the concatenation of the |Sec-WebSocket-

 Key| (as a string, not base64-decoded) with the string "258EAFA5-
 E914-47DA-95CA-C5AB0DC85B11" but ignoring any leading and

 trailing whitespace, the client MUST _Fail the WebSocket

 Connection_.

 5. If the response includes a |Sec-WebSocket-Extensions| header
 field and this header field indicates the use of an extension

 that was not present in the client's handshake (the server has

 indicated an extension not requested by the client), the client
 MUST _Fail the WebSocket Connection_. (The parsing of this

 header field to determine which extensions are requested is
 discussed in Section 9.1.)

Fette & Melnikov Standards Track [Page 19]
RFC 6455 The WebSocket Protocol December 2011

 6. If the response includes a |Sec-WebSocket-Protocol| header field

 and this header field indicates the use of a subprotocol that was

 not present in the client's handshake (the server has indicated a
 subprotocol not requested by the client), the client MUST _Fail

 the WebSocket Connection_.

 If the server's response does not conform to the requirements for the

 server's handshake as defined in this section and in Section 4.2.2,
 the client MUST _Fail the WebSocket Connection_.

 Please note that according to [RFC2616], all header field names in

 both HTTP requests and HTTP responses are case-insensitive.

 If the server's response is validated as provided for above, it is

 said that _The WebSocket Connection is Established_ and that the
 WebSocket Connection is in the OPEN state. The _Extensions In Use_

 is defined to be a (possibly empty) string, the value of which is

 equal to the value of the |Sec-WebSocket-Extensions| header field
 supplied by the server's handshake or the null value if that header

 field was not present in the server's handshake. The _Subprotocol In
 Use_ is defined to be the value of the |Sec-WebSocket-Protocol|

 header field in the server's handshake or the null value if that

 header field was not present in the server's handshake.
 Additionally, if any header fields in the server's handshake indicate

Page 15 of 53

 that cookies should be set (as defined by [RFC6265]), these cookies
 are referred to as _Cookies Set During the Server's Opening

 Handshake_.

4.2. Server-Side Requirements

 Servers MAY offload the management of the connection to other agents

 on the network, for example, load balancers and reverse proxies. In
 such a situation, the server for the purposes of this specification

 is considered to include all parts of the server-side infrastructure

 from the first device to terminate the TCP connection all the way to
 the server that processes requests and sends responses.

 EXAMPLE: A data center might have a server that responds to WebSocket

 requests with an appropriate handshake and then passes the connection

 to another server to actually process the data frames. For the
 purposes of this specification, the "server" is the combination of

 both computers.

Fette & Melnikov Standards Track [Page 20]

RFC 6455 The WebSocket Protocol December 2011

4.2.1. Reading the Client's Opening Handshake

 When a client starts a WebSocket connection, it sends its part of the

 opening handshake. The server must parse at least part of this
 handshake in order to obtain the necessary information to generate

 the server part of the handshake.

 The client's opening handshake consists of the following parts. If

 the server, while reading the handshake, finds that the client did
 not send a handshake that matches the description below (note that as

 per [RFC2616], the order of the header fields is not important),
 including but not limited to any violations of the ABNF grammar

 specified for the components of the handshake, the server MUST stop

 processing the client's handshake and return an HTTP response with an
 appropriate error code (such as 400 Bad Request).

 1. An HTTP/1.1 or higher GET request, including a "Request-URI"

 [RFC2616] that should be interpreted as a /resource name/

 defined in Section 3 (or an absolute HTTP/HTTPS URI containing
 the /resource name/).

 2. A |Host| header field containing the server's authority.

 3. An |Upgrade| header field containing the value "websocket",
 treated as an ASCII case-insensitive value.

 4. A |Connection| header field that includes the token "Upgrade",

 treated as an ASCII case-insensitive value.

 5. A |Sec-WebSocket-Key| header field with a base64-encoded (see

 Section 4 of [RFC4648]) value that, when decoded, is 16 bytes in
 length.

 6. A |Sec-WebSocket-Version| header field, with a value of 13.

 7. Optionally, an |Origin| header field. This header field is sent
 by all browser clients. A connection attempt lacking this

 header field SHOULD NOT be interpreted as coming from a browser

 client.

 8. Optionally, a |Sec-WebSocket-Protocol| header field, with a list
 of values indicating which protocols the client would like to

 speak, ordered by preference.

 9. Optionally, a |Sec-WebSocket-Extensions| header field, with a

Page 16 of 53

 list of values indicating which extensions the client would like
 to speak. The interpretation of this header field is discussed

 in Section 9.1.

Fette & Melnikov Standards Track [Page 21]

RFC 6455 The WebSocket Protocol December 2011

 10. Optionally, other header fields, such as those used to send
 cookies or request authentication to a server. Unknown header

 fields are ignored, as per [RFC2616].

4.2.2. Sending the Server's Opening Handshake

 When a client establishes a WebSocket connection to a server, the

 server MUST complete the following steps to accept the connection and

 send the server's opening handshake.

 1. If the connection is happening on an HTTPS (HTTP-over-TLS) port,
 perform a TLS handshake over the connection. If this fails

 (e.g., the client indicated a host name in the extended client

 hello "server_name" extension that the server does not host),
 then close the connection; otherwise, all further communication

 for the connection (including the server's handshake) MUST run
 through the encrypted tunnel [RFC5246].

 2. The server can perform additional client authentication, for
 example, by returning a 401 status code with the corresponding

 |WWW-Authenticate| header field as described in [RFC2616].

 3. The server MAY redirect the client using a 3xx status code

 [RFC2616]. Note that this step can happen together with, before,
 or after the optional authentication step described above.

 4. Establish the following information:

 /origin/
 The |Origin| header field in the client's handshake indicates

 the origin of the script establishing the connection. The
 origin is serialized to ASCII and converted to lowercase. The

 server MAY use this information as part of a determination of

 whether to accept the incoming connection. If the server does
 not validate the origin, it will accept connections from

 anywhere. If the server does not wish to accept this
 connection, it MUST return an appropriate HTTP error code

 (e.g., 403 Forbidden) and abort the WebSocket handshake

 described in this section. For more detail, refer to
 Section 10.

 /key/

 The |Sec-WebSocket-Key| header field in the client's handshake

 includes a base64-encoded value that, if decoded, is 16 bytes
 in length. This (encoded) value is used in the creation of

 the server's handshake to indicate an acceptance of the
 connection. It is not necessary for the server to base64-

 decode the |Sec-WebSocket-Key| value.

Fette & Melnikov Standards Track [Page 22]

RFC 6455 The WebSocket Protocol December 2011

 /version/

 The |Sec-WebSocket-Version| header field in the client's
 handshake includes the version of the WebSocket Protocol with

 which the client is attempting to communicate. If this
 version does not match a version understood by the server, the

 server MUST abort the WebSocket handshake described in this

 section and instead send an appropriate HTTP error code (such
 as 426 Upgrade Required) and a |Sec-WebSocket-Version| header

Page 17 of 53

 field indicating the version(s) the server is capable of
 understanding.

 /resource name/

 An identifier for the service provided by the server. If the

 server provides multiple services, then the value should be
 derived from the resource name given in the client's handshake

 in the "Request-URI" [RFC2616] of the GET method. If the
 requested service is not available, the server MUST send an

 appropriate HTTP error code (such as 404 Not Found) and abort

 the WebSocket handshake.

 /subprotocol/
 Either a single value representing the subprotocol the server

 is ready to use or null. The value chosen MUST be derived

 from the client's handshake, specifically by selecting one of
 the values from the |Sec-WebSocket-Protocol| field that the

 server is willing to use for this connection (if any). If the
 client's handshake did not contain such a header field or if

 the server does not agree to any of the client's requested

 subprotocols, the only acceptable value is null. The absence
 of such a field is equivalent to the null value (meaning that

 if the server does not wish to agree to one of the suggested
 subprotocols, it MUST NOT send back a |Sec-WebSocket-Protocol|

 header field in its response). The empty string is not the

 same as the null value for these purposes and is not a legal
 value for this field. The ABNF for the value of this header

 field is (token), where the definitions of constructs and
 rules are as given in [RFC2616].

 /extensions/
 A (possibly empty) list representing the protocol-level

 extensions the server is ready to use. If the server supports
 multiple extensions, then the value MUST be derived from the

 client's handshake, specifically by selecting one or more of

 the values from the |Sec-WebSocket-Extensions| field. The
 absence of such a field is equivalent to the null value. The

 empty string is not the same as the null value for these

Fette & Melnikov Standards Track [Page 23]

RFC 6455 The WebSocket Protocol December 2011

 purposes. Extensions not listed by the client MUST NOT be
 listed. The method by which these values should be selected

 and interpreted is discussed in Section 9.1.

 5. If the server chooses to accept the incoming connection, it MUST

 reply with a valid HTTP response indicating the following.

 1. A Status-Line with a 101 response code as per RFC 2616

 [RFC2616]. Such a response could look like "HTTP/1.1 101
 Switching Protocols".

 2. An |Upgrade| header field with value "websocket" as per RFC

 2616 [RFC2616].

 3. A |Connection| header field with value "Upgrade".

 4. A |Sec-WebSocket-Accept| header field. The value of this

 header field is constructed by concatenating /key/, defined

 above in step 4 in Section 4.2.2, with the string "258EAFA5-
 E914-47DA-95CA-C5AB0DC85B11", taking the SHA-1 hash of this

 concatenated value to obtain a 20-byte value and base64-
 encoding (see Section 4 of [RFC4648]) this 20-byte hash.

 The ABNF [RFC2616] of this header field is defined as
 follows:

Page 18 of 53

 Sec-WebSocket-Accept = base64-value-non-empty

 base64-value-non-empty = (1*base64-data [base64-padding]) |
 base64-padding

 base64-data = 4base64-character

 base64-padding = (2base64-character "==") |
 (3base64-character "=")

 base64-character = ALPHA | DIGIT | "+" | "/"

 NOTE: As an example, if the value of the |Sec-WebSocket-Key| header

 field in the client's handshake were "dGhlIHNhbXBsZSBub25jZQ==", the
 server would append the string "258EAFA5-E914-47DA-95CA-C5AB0DC85B11"

 to form the string "dGhlIHNhbXBsZSBub25jZQ==258EAFA5-E914-47DA-95CA-
 C5AB0DC85B11". The server would then take the SHA-1 hash of this

 string, giving the value 0xb3 0x7a 0x4f 0x2c 0xc0 0x62 0x4f 0x16 0x90

 0xf6 0x46 0x06 0xcf 0x38 0x59 0x45 0xb2 0xbe 0xc4 0xea. This value
 is then base64-encoded, to give the value

 "s3pPLMBiTxaQ9kYGzzhZRbK+xOo=", which would be returned in the
 |Sec-WebSocket-Accept| header field.

 5. Optionally, a |Sec-WebSocket-Protocol| header field, with a
 value /subprotocol/ as defined in step 4 in Section 4.2.2.

Fette & Melnikov Standards Track [Page 24]

RFC 6455 The WebSocket Protocol December 2011

 6. Optionally, a |Sec-WebSocket-Extensions| header field, with a

 value /extensions/ as defined in step 4 in Section 4.2.2. If
 multiple extensions are to be used, they can all be listed in

 a single |Sec-WebSocket-Extensions| header field or split

 between multiple instances of the |Sec-WebSocket-Extensions|
 header field.

 This completes the server's handshake. If the server finishes these

 steps without aborting the WebSocket handshake, the server considers

 the WebSocket connection to be established and that the WebSocket
 connection is in the OPEN state. At this point, the server may begin

 sending (and receiving) data.

4.3. Collected ABNF for New Header Fields Used in Handshake

 This section is using ABNF syntax/rules from Section 2.1 of

 [RFC2616], including the "implied *LWS rule".

 Note that the following ABNF conventions are used in this section.

 Some names of the rules correspond to names of the corresponding
 header fields. Such rules express values of the corresponding header

 fields, for example, the Sec-WebSocket-Key ABNF rule describes syntax
 of the |Sec-WebSocket-Key| header field value. ABNF rules with the

 "-Client" suffix in the name are only used in requests sent by the

 client to the server; ABNF rules with the "-Server" suffix in the
 name are only used in responses sent by the server to the client.

 For example, the ABNF rule Sec-WebSocket-Protocol-Client describes
 syntax of the |Sec-WebSocket-Protocol| header field value sent by the

 client to the server.

 The following new header fields can be sent during the handshake from

 the client to the server:

 Sec-WebSocket-Key = base64-value-non-empty

 Sec-WebSocket-Extensions = extension-list
 Sec-WebSocket-Protocol-Client = 1#token

 Sec-WebSocket-Version-Client = version

 base64-value-non-empty = (1*base64-data [base64-padding]) |

 base64-padding
 base64-data = 4base64-character

Page 19 of 53

 base64-padding = (2base64-character "==") |
 (3base64-character "=")

 base64-character = ALPHA | DIGIT | "+" | "/"
 extension-list = 1#extension

 extension = extension-token *(";" extension-param)

 extension-token = registered-token
 registered-token = token

Fette & Melnikov Standards Track [Page 25]

RFC 6455 The WebSocket Protocol December 2011

 extension-param = token ["=" (token | quoted-string)]

 ; When using the quoted-string syntax variant, the value
 ; after quoted-string unescaping MUST conform to the

 ; 'token' ABNF.

 NZDIGIT = "1" | "2" | "3" | "4" | "5" | "6" |
 "7" | "8" | "9"

 version = DIGIT | (NZDIGIT DIGIT) |
 ("1" DIGIT DIGIT) | ("2" DIGIT DIGIT)

 ; Limited to 0-255 range, with no leading zeros

 The following new header fields can be sent during the handshake from

 the server to the client:

 Sec-WebSocket-Extensions = extension-list

 Sec-WebSocket-Accept = base64-value-non-empty
 Sec-WebSocket-Protocol-Server = token

 Sec-WebSocket-Version-Server = 1#version

4.4. Supporting Multiple Versions of WebSocket Protocol

 This section provides some guidance on supporting multiple versions

 of the WebSocket Protocol in clients and servers.

 Using the WebSocket version advertisement capability (the

 |Sec-WebSocket-Version| header field), a client can initially request
 the version of the WebSocket Protocol that it prefers (which doesn't

 necessarily have to be the latest supported by the client). If the
 server supports the requested version and the handshake message is

 otherwise valid, the server will accept that version. If the server

 doesn't support the requested version, it MUST respond with a
 |Sec-WebSocket-Version| header field (or multiple

 |Sec-WebSocket-Version| header fields) containing all versions it is
 willing to use. At this point, if the client supports one of the

 advertised versions, it can repeat the WebSocket handshake using a

 new version value.

 The following example demonstrates version negotiation described
 above:

 GET /chat HTTP/1.1
 Host: server.example.com

 Upgrade: websocket
 Connection: Upgrade

 ...

 Sec-WebSocket-Version: 25

Fette & Melnikov Standards Track [Page 26]
RFC 6455 The WebSocket Protocol December 2011

 The response from the server might look as follows:

 HTTP/1.1 400 Bad Request
 ...

 Sec-WebSocket-Version: 13, 8, 7

 Note that the last response from the server might also look like:

Page 20 of 53

 HTTP/1.1 400 Bad Request

 ...
 Sec-WebSocket-Version: 13

 Sec-WebSocket-Version: 8, 7

 The client now repeats the handshake that conforms to version 13:

 GET /chat HTTP/1.1

 Host: server.example.com

 Upgrade: websocket
 Connection: Upgrade

 ...
 Sec-WebSocket-Version: 13

5. Data Framing

5.1. Overview

 In the WebSocket Protocol, data is transmitted using a sequence of

 frames. To avoid confusing network intermediaries (such as
 intercepting proxies) and for security reasons that are further

 discussed in Section 10.3, a client MUST mask all frames that it
 sends to the server (see Section 5.3 for further details). (Note

 that masking is done whether or not the WebSocket Protocol is running

 over TLS.) The server MUST close the connection upon receiving a
 frame that is not masked. In this case, a server MAY send a Close

 frame with a status code of 1002 (protocol error) as defined in
 Section 7.4.1. A server MUST NOT mask any frames that it sends to

 the client. A client MUST close a connection if it detects a masked

 frame. In this case, it MAY use the status code 1002 (protocol
 error) as defined in Section 7.4.1. (These rules might be relaxed in

 a future specification.)

 The base framing protocol defines a frame type with an opcode, a

 payload length, and designated locations for "Extension data" and
 "Application data", which together define the "Payload data".

 Certain bits and opcodes are reserved for future expansion of the
 protocol.

Fette & Melnikov Standards Track [Page 27]
RFC 6455 The WebSocket Protocol December 2011

 A data frame MAY be transmitted by either the client or the server at

 any time after opening handshake completion and before that endpoint

 has sent a Close frame (Section 5.5.1).

5.2. Base Framing Protocol

 This wire format for the data transfer part is described by the ABNF

 [RFC5234] given in detail in this section. (Note that, unlike in
 other sections of this document, the ABNF in this section is

 operating on groups of bits. The length of each group of bits is
 indicated in a comment. When encoded on the wire, the most

 significant bit is the leftmost in the ABNF). A high-level overview

 of the framing is given in the following figure. In a case of
 conflict between the figure below and the ABNF specified later in

 this section, the figure is authoritative.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-------+-+-------------+-------------------------------+

 |F|R|R|R| opcode|M| Payload len | Extended payload length |
 |I|S|S|S| (4) |A| (7) | (16/64) |

 |N|V|V|V| |S| | (if payload len==126/127) |

 | |1|2|3| |K| | |
 +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +

Page 21 of 53

 | Extended payload length continued, if payload len == 127 |
 + - - - - - - - - - - - - - - - +-------------------------------+

 | |Masking-key, if MASK set to 1 |
 +-------------------------------+-------------------------------+

 | Masking-key (continued) | Payload Data |

 +-------------------------------- - - - - - - - - - - - - - - - +
 : Payload Data continued ... :

 + - +
 | Payload Data continued ... |

 +---+

 FIN: 1 bit

 Indicates that this is the final fragment in a message. The first

 fragment MAY also be the final fragment.

 RSV1, RSV2, RSV3: 1 bit each

 MUST be 0 unless an extension is negotiated that defines meanings

 for non-zero values. If a nonzero value is received and none of

 the negotiated extensions defines the meaning of such a nonzero
 value, the receiving endpoint MUST _Fail the WebSocket

 Connection_.

Fette & Melnikov Standards Track [Page 28]

RFC 6455 The WebSocket Protocol December 2011

 Opcode: 4 bits

 Defines the interpretation of the "Payload data". If an unknown

 opcode is received, the receiving endpoint MUST _Fail the
 WebSocket Connection_. The following values are defined.

 * %x0 denotes a continuation frame

 * %x1 denotes a text frame

 * %x2 denotes a binary frame

 * %x3-7 are reserved for further non-control frames

 * %x8 denotes a connection close

 * %x9 denotes a ping

 * %xA denotes a pong

 * %xB-F are reserved for further control frames

 Mask: 1 bit

 Defines whether the "Payload data" is masked. If set to 1, a

 masking key is present in masking-key, and this is used to unmask
 the "Payload data" as per Section 5.3. All frames sent from

 client to server have this bit set to 1.

 Payload length: 7 bits, 7+16 bits, or 7+64 bits

 The length of the "Payload data", in bytes: if 0-125, that is the

 payload length. If 126, the following 2 bytes interpreted as a

 16-bit unsigned integer are the payload length. If 127, the
 following 8 bytes interpreted as a 64-bit unsigned integer (the

 most significant bit MUST be 0) are the payload length. Multibyte
 length quantities are expressed in network byte order. Note that

 in all cases, the minimal number of bytes MUST be used to encode

 the length, for example, the length of a 124-byte-long string
 can't be encoded as the sequence 126, 0, 124. The payload length

Page 22 of 53

 is the length of the "Extension data" + the length of the
 "Application data". The length of the "Extension data" may be

 zero, in which case the payload length is the length of the
 "Application data".

Fette & Melnikov Standards Track [Page 29]
RFC 6455 The WebSocket Protocol December 2011

 Masking-key: 0 or 4 bytes

 All frames sent from the client to the server are masked by a
 32-bit value that is contained within the frame. This field is

 present if the mask bit is set to 1 and is absent if the mask bit
 is set to 0. See Section 5.3 for further information on client-

 to-server masking.

 Payload data: (x+y) bytes

 The "Payload data" is defined as "Extension data" concatenated

 with "Application data".

 Extension data: x bytes

 The "Extension data" is 0 bytes unless an extension has been

 negotiated. Any extension MUST specify the length of the

 "Extension data", or how that length may be calculated, and how
 the extension use MUST be negotiated during the opening handshake.

 If present, the "Extension data" is included in the total payload
 length.

 Application data: y bytes

 Arbitrary "Application data", taking up the remainder of the frame
 after any "Extension data". The length of the "Application data"

 is equal to the payload length minus the length of the "Extension

 data".

 The base framing protocol is formally defined by the following ABNF
 [RFC5234]. It is important to note that the representation of this

 data is binary, not ASCII characters. As such, a field with a length

 of 1 bit that takes values %x0 / %x1 is represented as a single bit
 whose value is 0 or 1, not a full byte (octet) that stands for the

 characters "0" or "1" in the ASCII encoding. A field with a length
 of 4 bits with values between %x0-F again is represented by 4 bits,

 again NOT by an ASCII character or full byte (octet) with these

 values. [RFC5234] does not specify a character encoding: "Rules
 resolve into a string of terminal values, sometimes called

 characters. In ABNF, a character is merely a non-negative integer.
 In certain contexts, a specific mapping (encoding) of values into a

 character set (such as ASCII) will be specified." Here, the

 specified encoding is a binary encoding where each terminal value is
 encoded in the specified number of bits, which varies for each field.

Fette & Melnikov Standards Track [Page 30]

RFC 6455 The WebSocket Protocol December 2011

 ws-frame = frame-fin ; 1 bit in length

 frame-rsv1 ; 1 bit in length
 frame-rsv2 ; 1 bit in length

 frame-rsv3 ; 1 bit in length

 frame-opcode ; 4 bits in length
 frame-masked ; 1 bit in length

 frame-payload-length ; either 7, 7+16,
 ; or 7+64 bits in

 ; length

 [frame-masking-key] ; 32 bits in length
 frame-payload-data ; n*8 bits in

Page 23 of 53

 ; length, where
 ; n >= 0

 frame-fin = %x0 ; more frames of this message follow

 / %x1 ; final frame of this message

 ; 1 bit in length

 frame-rsv1 = %x0 / %x1
 ; 1 bit in length, MUST be 0 unless

 ; negotiated otherwise

 frame-rsv2 = %x0 / %x1

 ; 1 bit in length, MUST be 0 unless
 ; negotiated otherwise

 frame-rsv3 = %x0 / %x1
 ; 1 bit in length, MUST be 0 unless

 ; negotiated otherwise

 frame-opcode = frame-opcode-non-control /

 frame-opcode-control /
 frame-opcode-cont

 frame-opcode-cont = %x0 ; frame continuation

 frame-opcode-non-control= %x1 ; text frame
 / %x2 ; binary frame

 / %x3-7
 ; 4 bits in length,

 ; reserved for further non-control frames

 frame-opcode-control = %x8 ; connection close

 / %x9 ; ping
 / %xA ; pong

 / %xB-F ; reserved for further control

 ; frames
 ; 4 bits in length

Fette & Melnikov Standards Track [Page 31]

RFC 6455 The WebSocket Protocol December 2011

 frame-masked = %x0

 ; frame is not masked, no frame-masking-key
 / %x1

 ; frame is masked, frame-masking-key present

 ; 1 bit in length

 frame-payload-length = (%x00-7D)
 / (%x7E frame-payload-length-16)

 / (%x7F frame-payload-length-63)

 ; 7, 7+16, or 7+64 bits in length,
 ; respectively

 frame-payload-length-16 = %x0000-FFFF ; 16 bits in length

 frame-payload-length-63 = %x0000000000000000-7FFFFFFFFFFFFFFF
 ; 64 bits in length

 frame-masking-key = 4(%x00-FF)

 ; present only if frame-masked is 1

 ; 32 bits in length

 frame-payload-data = (frame-masked-extension-data
 frame-masked-application-data)

 ; when frame-masked is 1

 / (frame-unmasked-extension-data
 frame-unmasked-application-data)

Page 24 of 53

 ; when frame-masked is 0

 frame-masked-extension-data = *(%x00-FF)
 ; reserved for future extensibility

 ; n*8 bits in length, where n >= 0

 frame-masked-application-data = *(%x00-FF)

 ; n*8 bits in length, where n >= 0

 frame-unmasked-extension-data = *(%x00-FF)

 ; reserved for future extensibility
 ; n*8 bits in length, where n >= 0

 frame-unmasked-application-data = *(%x00-FF)

 ; n*8 bits in length, where n >= 0

5.3. Client-to-Server Masking

 A masked frame MUST have the field frame-masked set to 1, as defined

 in Section 5.2.

Fette & Melnikov Standards Track [Page 32]

RFC 6455 The WebSocket Protocol December 2011

 The masking key is contained completely within the frame, as defined

 in Section 5.2 as frame-masking-key. It is used to mask the "Payload
 data" defined in the same section as frame-payload-data, which

 includes "Extension data" and "Application data".

 The masking key is a 32-bit value chosen at random by the client.

 When preparing a masked frame, the client MUST pick a fresh masking
 key from the set of allowed 32-bit values. The masking key needs to

 be unpredictable; thus, the masking key MUST be derived from a strong
 source of entropy, and the masking key for a given frame MUST NOT

 make it simple for a server/proxy to predict the masking key for a

 subsequent frame. The unpredictability of the masking key is
 essential to prevent authors of malicious applications from selecting

 the bytes that appear on the wire. RFC 4086 [RFC4086] discusses what
 entails a suitable source of entropy for security-sensitive

 applications.

 The masking does not affect the length of the "Payload data". To

 convert masked data into unmasked data, or vice versa, the following
 algorithm is applied. The same algorithm applies regardless of the

 direction of the translation, e.g., the same steps are applied to

 mask the data as to unmask the data.

 Octet i of the transformed data ("transformed-octet-i") is the XOR of
 octet i of the original data ("original-octet-i") with octet at index

 i modulo 4 of the masking key ("masking-key-octet-j"):

 j = i MOD 4

 transformed-octet-i = original-octet-i XOR masking-key-octet-j

 The payload length, indicated in the framing as frame-payload-length,

 does NOT include the length of the masking key. It is the length of
 the "Payload data", e.g., the number of bytes following the masking

 key.

5.4. Fragmentation

 The primary purpose of fragmentation is to allow sending a message

 that is of unknown size when the message is started without having to
 buffer that message. If messages couldn't be fragmented, then an

 endpoint would have to buffer the entire message so its length could

 be counted before the first byte is sent. With fragmentation, a
 server or intermediary may choose a reasonable size buffer and, when

Page 25 of 53

 the buffer is full, write a fragment to the network.

 A secondary use-case for fragmentation is for multiplexing, where it
 is not desirable for a large message on one logical channel to

 monopolize the output channel, so the multiplexing needs to be free

Fette & Melnikov Standards Track [Page 33]

RFC 6455 The WebSocket Protocol December 2011

 to split the message into smaller fragments to better share the

 output channel. (Note that the multiplexing extension is not
 described in this document.)

 Unless specified otherwise by an extension, frames have no semantic

 meaning. An intermediary might coalesce and/or split frames, if no

 extensions were negotiated by the client and the server or if some
 extensions were negotiated, but the intermediary understood all the

 extensions negotiated and knows how to coalesce and/or split frames
 in the presence of these extensions. One implication of this is that

 in absence of extensions, senders and receivers must not depend on

 the presence of specific frame boundaries.

 The following rules apply to fragmentation:

 o An unfragmented message consists of a single frame with the FIN

 bit set (Section 5.2) and an opcode other than 0.

 o A fragmented message consists of a single frame with the FIN bit
 clear and an opcode other than 0, followed by zero or more frames

 with the FIN bit clear and the opcode set to 0, and terminated by

 a single frame with the FIN bit set and an opcode of 0. A
 fragmented message is conceptually equivalent to a single larger

 message whose payload is equal to the concatenation of the
 payloads of the fragments in order; however, in the presence of

 extensions, this may not hold true as the extension defines the

 interpretation of the "Extension data" present. For instance,
 "Extension data" may only be present at the beginning of the first

 fragment and apply to subsequent fragments, or there may be
 "Extension data" present in each of the fragments that applies

 only to that particular fragment. In the absence of "Extension

 data", the following example demonstrates how fragmentation works.

 EXAMPLE: For a text message sent as three fragments, the first
 fragment would have an opcode of 0x1 and a FIN bit clear, the

 second fragment would have an opcode of 0x0 and a FIN bit clear,

 and the third fragment would have an opcode of 0x0 and a FIN bit
 that is set.

 o Control frames (see Section 5.5) MAY be injected in the middle of

 a fragmented message. Control frames themselves MUST NOT be

 fragmented.

 o Message fragments MUST be delivered to the recipient in the order
 sent by the sender.

Fette & Melnikov Standards Track [Page 34]
RFC 6455 The WebSocket Protocol December 2011

 o The fragments of one message MUST NOT be interleaved between the

 fragments of another message unless an extension has been

 negotiated that can interpret the interleaving.

 o An endpoint MUST be capable of handling control frames in the
 middle of a fragmented message.

 o A sender MAY create fragments of any size for non-control
 messages.

Page 26 of 53

 o Clients and servers MUST support receiving both fragmented and

 unfragmented messages.

 o As control frames cannot be fragmented, an intermediary MUST NOT

 attempt to change the fragmentation of a control frame.

 o An intermediary MUST NOT change the fragmentation of a message if
 any reserved bit values are used and the meaning of these values

 is not known to the intermediary.

 o An intermediary MUST NOT change the fragmentation of any message

 in the context of a connection where extensions have been
 negotiated and the intermediary is not aware of the semantics of

 the negotiated extensions. Similarly, an intermediary that didn't

 see the WebSocket handshake (and wasn't notified about its
 content) that resulted in a WebSocket connection MUST NOT change

 the fragmentation of any message of such connection.

 o As a consequence of these rules, all fragments of a message are of

 the same type, as set by the first fragment's opcode. Since
 control frames cannot be fragmented, the type for all fragments in

 a message MUST be either text, binary, or one of the reserved
 opcodes.

 NOTE: If control frames could not be interjected, the latency of a
 ping, for example, would be very long if behind a large message.

 Hence, the requirement of handling control frames in the middle of a
 fragmented message.

 IMPLEMENTATION NOTE: In the absence of any extension, a receiver
 doesn't have to buffer the whole frame in order to process it. For

 example, if a streaming API is used, a part of a frame can be
 delivered to the application. However, note that this assumption

 might not hold true for all future WebSocket extensions.

Fette & Melnikov Standards Track [Page 35]

RFC 6455 The WebSocket Protocol December 2011

5.5. Control Frames

 Control frames are identified by opcodes where the most significant

 bit of the opcode is 1. Currently defined opcodes for control frames
 include 0x8 (Close), 0x9 (Ping), and 0xA (Pong). Opcodes 0xB-0xF are

 reserved for further control frames yet to be defined.

 Control frames are used to communicate state about the WebSocket.

 Control frames can be interjected in the middle of a fragmented
 message.

 All control frames MUST have a payload length of 125 bytes or less
 and MUST NOT be fragmented.

5.5.1. Close

 The Close frame contains an opcode of 0x8.

 The Close frame MAY contain a body (the "Application data" portion of
 the frame) that indicates a reason for closing, such as an endpoint

 shutting down, an endpoint having received a frame too large, or an

 endpoint having received a frame that does not conform to the format
 expected by the endpoint. If there is a body, the first two bytes of

 the body MUST be a 2-byte unsigned integer (in network byte order)
 representing a status code with value /code/ defined in Section 7.4.

 Following the 2-byte integer, the body MAY contain UTF-8-encoded data

 with value /reason/, the interpretation of which is not defined by
 this specification. This data is not necessarily human readable but

Page 27 of 53

 may be useful for debugging or passing information relevant to the
 script that opened the connection. As the data is not guaranteed to

 be human readable, clients MUST NOT show it to end users.

 Close frames sent from client to server must be masked as per

 Section 5.3.

 The application MUST NOT send any more data frames after sending a
 Close frame.

 If an endpoint receives a Close frame and did not previously send a
 Close frame, the endpoint MUST send a Close frame in response. (When

 sending a Close frame in response, the endpoint typically echos the
 status code it received.) It SHOULD do so as soon as practical. An

 endpoint MAY delay sending a Close frame until its current message is

 sent (for instance, if the majority of a fragmented message is
 already sent, an endpoint MAY send the remaining fragments before

 sending a Close frame). However, there is no guarantee that the
 endpoint that has already sent a Close frame will continue to process

 data.

Fette & Melnikov Standards Track [Page 36]

RFC 6455 The WebSocket Protocol December 2011

 After both sending and receiving a Close message, an endpoint

 considers the WebSocket connection closed and MUST close the
 underlying TCP connection. The server MUST close the underlying TCP

 connection immediately; the client SHOULD wait for the server to
 close the connection but MAY close the connection at any time after

 sending and receiving a Close message, e.g., if it has not received a

 TCP Close from the server in a reasonable time period.

 If a client and server both send a Close message at the same time,
 both endpoints will have sent and received a Close message and should

 consider the WebSocket connection closed and close the underlying TCP

 connection.

5.5.2. Ping

 The Ping frame contains an opcode of 0x9.

 A Ping frame MAY include "Application data".

 Upon receipt of a Ping frame, an endpoint MUST send a Pong frame in

 response, unless it already received a Close frame. It SHOULD

 respond with Pong frame as soon as is practical. Pong frames are
 discussed in Section 5.5.3.

 An endpoint MAY send a Ping frame any time after the connection is

 established and before the connection is closed.

 NOTE: A Ping frame may serve either as a keepalive or as a means to

 verify that the remote endpoint is still responsive.

5.5.3. Pong

 The Pong frame contains an opcode of 0xA.

 Section 5.5.2 details requirements that apply to both Ping and Pong

 frames.

 A Pong frame sent in response to a Ping frame must have identical

 "Application data" as found in the message body of the Ping frame
 being replied to.

 If an endpoint receives a Ping frame and has not yet sent Pong
 frame(s) in response to previous Ping frame(s), the endpoint MAY

Page 28 of 53

 elect to send a Pong frame for only the most recently processed Ping
 frame.

Fette & Melnikov Standards Track [Page 37]

RFC 6455 The WebSocket Protocol December 2011

 A Pong frame MAY be sent unsolicited. This serves as a

 unidirectional heartbeat. A response to an unsolicited Pong frame is
 not expected.

5.6. Data Frames

 Data frames (e.g., non-control frames) are identified by opcodes
 where the most significant bit of the opcode is 0. Currently defined

 opcodes for data frames include 0x1 (Text), 0x2 (Binary). Opcodes

 0x3-0x7 are reserved for further non-control frames yet to be
 defined.

 Data frames carry application-layer and/or extension-layer data. The

 opcode determines the interpretation of the data:

 Text

 The "Payload data" is text data encoded as UTF-8. Note that a

 particular text frame might include a partial UTF-8 sequence;

 however, the whole message MUST contain valid UTF-8. Invalid
 UTF-8 in reassembled messages is handled as described in

 Section 8.1.

 Binary

 The "Payload data" is arbitrary binary data whose interpretation

 is solely up to the application layer.

5.7. Examples

 o A single-frame unmasked text message

 * 0x81 0x05 0x48 0x65 0x6c 0x6c 0x6f (contains "Hello")

 o A single-frame masked text message

 * 0x81 0x85 0x37 0xfa 0x21 0x3d 0x7f 0x9f 0x4d 0x51 0x58
 (contains "Hello")

 o A fragmented unmasked text message

 * 0x01 0x03 0x48 0x65 0x6c (contains "Hel")

 * 0x80 0x02 0x6c 0x6f (contains "lo")

Fette & Melnikov Standards Track [Page 38]

RFC 6455 The WebSocket Protocol December 2011

 o Unmasked Ping request and masked Ping response

 * 0x89 0x05 0x48 0x65 0x6c 0x6c 0x6f (contains a body of "Hello",

 but the contents of the body are arbitrary)

 * 0x8a 0x85 0x37 0xfa 0x21 0x3d 0x7f 0x9f 0x4d 0x51 0x58

 (contains a body of "Hello", matching the body of the ping)

 o 256 bytes binary message in a single unmasked frame

 * 0x82 0x7E 0x0100 [256 bytes of binary data]

 o 64KiB binary message in a single unmasked frame

Page 29 of 53

 * 0x82 0x7F 0x0000000000010000 [65536 bytes of binary data]

5.8. Extensibility

 The protocol is designed to allow for extensions, which will add
 capabilities to the base protocol. The endpoints of a connection

 MUST negotiate the use of any extensions during the opening
 handshake. This specification provides opcodes 0x3 through 0x7 and

 0xB through 0xF, the "Extension data" field, and the frame-rsv1,

 frame-rsv2, and frame-rsv3 bits of the frame header for use by
 extensions. The negotiation of extensions is discussed in further

 detail in Section 9.1. Below are some anticipated uses of
 extensions. This list is neither complete nor prescriptive.

 o "Extension data" may be placed in the "Payload data" before the
 "Application data".

 o Reserved bits can be allocated for per-frame needs.

 o Reserved opcode values can be defined.

 o Reserved bits can be allocated to the opcode field if more opcode
 values are needed.

 o A reserved bit or an "extension" opcode can be defined that
 allocates additional bits out of the "Payload data" to define

 larger opcodes or more per-frame bits.

6. Sending and Receiving Data

6.1. Sending Data

 To _Send a WebSocket Message_ comprising of /data/ over a WebSocket

 connection, an endpoint MUST perform the following steps.

Fette & Melnikov Standards Track [Page 39]

RFC 6455 The WebSocket Protocol December 2011

 1. The endpoint MUST ensure the WebSocket connection is in the OPEN

 state (cf. Sections 4.1 and 4.2.2.) If at any point the state of
 the WebSocket connection changes, the endpoint MUST abort the

 following steps.

 2. An endpoint MUST encapsulate the /data/ in a WebSocket frame as

 defined in Section 5.2. If the data to be sent is large or if
 the data is not available in its entirety at the point the

 endpoint wishes to begin sending the data, the endpoint MAY
 alternately encapsulate the data in a series of frames as defined

 in Section 5.4.

 3. The opcode (frame-opcode) of the first frame containing the data

 MUST be set to the appropriate value from Section 5.2 for data
 that is to be interpreted by the recipient as text or binary

 data.

 4. The FIN bit (frame-fin) of the last frame containing the data

 MUST be set to 1 as defined in Section 5.2.

 5. If the data is being sent by the client, the frame(s) MUST be

 masked as defined in Section 5.3.

 6. If any extensions (Section 9) have been negotiated for the
 WebSocket connection, additional considerations may apply as per

 the definition of those extensions.

 7. The frame(s) that have been formed MUST be transmitted over the

Page 30 of 53

 underlying network connection.

6.2. Receiving Data

 To receive WebSocket data, an endpoint listens on the underlying

 network connection. Incoming data MUST be parsed as WebSocket frames
 as defined in Section 5.2. If a control frame (Section 5.5) is

 received, the frame MUST be handled as defined by Section 5.5. Upon
 receiving a data frame (Section 5.6), the endpoint MUST note the

 /type/ of the data as defined by the opcode (frame-opcode) from

 Section 5.2. The "Application data" from this frame is defined as
 the /data/ of the message. If the frame comprises an unfragmented

 message (Section 5.4), it is said that _A WebSocket Message Has Been
 Received_ with type /type/ and data /data/. If the frame is part of

 a fragmented message, the "Application data" of the subsequent data

 frames is concatenated to form the /data/. When the last fragment is
 received as indicated by the FIN bit (frame-fin), it is said that _A

 WebSocket Message Has Been Received_ with data /data/ (comprised of
 the concatenation of the "Application data" of the fragments) and

Fette & Melnikov Standards Track [Page 40]
RFC 6455 The WebSocket Protocol December 2011

 type /type/ (noted from the first frame of the fragmented message).

 Subsequent data frames MUST be interpreted as belonging to a new

 WebSocket message.

 Extensions (Section 9) MAY change the semantics of how data is read,
 specifically including what comprises a message boundary.

 Extensions, in addition to adding "Extension data" before the

 "Application data" in a payload, MAY also modify the "Application
 data" (such as by compressing it).

 A server MUST remove masking for data frames received from a client

 as described in Section 5.3.

7. Closing the Connection

7.1. Definitions

7.1.1. Close the WebSocket Connection

 To _Close the WebSocket Connection_, an endpoint closes the
 underlying TCP connection. An endpoint SHOULD use a method that

 cleanly closes the TCP connection, as well as the TLS session, if

 applicable, discarding any trailing bytes that may have been
 received. An endpoint MAY close the connection via any means

 available when necessary, such as when under attack.

 The underlying TCP connection, in most normal cases, SHOULD be closed

 first by the server, so that it holds the TIME_WAIT state and not the
 client (as this would prevent it from re-opening the connection for 2

 maximum segment lifetimes (2MSL), while there is no corresponding
 server impact as a TIME_WAIT connection is immediately reopened upon

 a new SYN with a higher seq number). In abnormal cases (such as not

 having received a TCP Close from the server after a reasonable amount
 of time) a client MAY initiate the TCP Close. As such, when a server

 is instructed to _Close the WebSocket Connection_ it SHOULD initiate
 a TCP Close immediately, and when a client is instructed to do the

 same, it SHOULD wait for a TCP Close from the server.

 As an example of how to obtain a clean closure in C using Berkeley

 sockets, one would call shutdown() with SHUT_WR on the socket, call
 recv() until obtaining a return value of 0 indicating that the peer

 has also performed an orderly shutdown, and finally call close() on

 the socket.

Page 31 of 53

Fette & Melnikov Standards Track [Page 41]
RFC 6455 The WebSocket Protocol December 2011

7.1.2. Start the WebSocket Closing Handshake

 To _Start the WebSocket Closing Handshake_ with a status code
 (Section 7.4) /code/ and an optional close reason (Section 7.1.6)

 /reason/, an endpoint MUST send a Close control frame, as described
 in Section 5.5.1, whose status code is set to /code/ and whose close

 reason is set to /reason/. Once an endpoint has both sent and

 received a Close control frame, that endpoint SHOULD _Close the
 WebSocket Connection_ as defined in Section 7.1.1.

7.1.3. The WebSocket Closing Handshake is Started

 Upon either sending or receiving a Close control frame, it is said
 that _The WebSocket Closing Handshake is Started_ and that the

 WebSocket connection is in the CLOSING state.

7.1.4. The WebSocket Connection is Closed

 When the underlying TCP connection is closed, it is said that _The

 WebSocket Connection is Closed_ and that the WebSocket connection is
 in the CLOSED state. If the TCP connection was closed after the

 WebSocket closing handshake was completed, the WebSocket connection

 is said to have been closed _cleanly_.

 If the WebSocket connection could not be established, it is also said
 that _The WebSocket Connection is Closed_, but not _cleanly_.

7.1.5. The WebSocket Connection Close Code

 As defined in Sections 5.5.1 and 7.4, a Close control frame may
 contain a status code indicating a reason for closure. A closing of

 the WebSocket connection may be initiated by either endpoint,

 potentially simultaneously. _The WebSocket Connection Close Code_ is
 defined as the status code (Section 7.4) contained in the first Close

 control frame received by the application implementing this protocol.
 If this Close control frame contains no status code, _The WebSocket

 Connection Close Code_ is considered to be 1005. If _The WebSocket

 Connection is Closed_ and no Close control frame was received by the
 endpoint (such as could occur if the underlying transport connection

 is lost), _The WebSocket Connection Close Code_ is considered to be
 1006.

 NOTE: Two endpoints may not agree on the value of _The WebSocket
 Connection Close Code_. As an example, if the remote endpoint sent a

 Close frame but the local application has not yet read the data
 containing the Close frame from its socket's receive buffer, and the

 local application independently decided to close the connection and

 send a Close frame, both endpoints will have sent and received a

Fette & Melnikov Standards Track [Page 42]
RFC 6455 The WebSocket Protocol December 2011

 Close frame and will not send further Close frames. Each endpoint
 will see the status code sent by the other end as _The WebSocket

 Connection Close Code_. As such, it is possible that the two
 endpoints may not agree on the value of _The WebSocket Connection

 Close Code_ in the case that both endpoints _Start the WebSocket

 Closing Handshake_ independently and at roughly the same time.

7.1.6. The WebSocket Connection Close Reason

 As defined in Sections 5.5.1 and 7.4, a Close control frame may

 contain a status code indicating a reason for closure, followed by
 UTF-8-encoded data, the interpretation of said data being left to the

Page 32 of 53

 endpoints and not defined by this protocol. A closing of the
 WebSocket connection may be initiated by either endpoint, potentially

 simultaneously. _The WebSocket Connection Close Reason_ is defined as
 the UTF-8-encoded data following the status code (Section 7.4)

 contained in the first Close control frame received by the

 application implementing this protocol. If there is no such data in
 the Close control frame, _The WebSocket Connection Close Reason_ is

 the empty string.

 NOTE: Following the same logic as noted in Section 7.1.5, two

 endpoints may not agree on _The WebSocket Connection Close Reason_.

7.1.7. Fail the WebSocket Connection

 Certain algorithms and specifications require an endpoint to _Fail

 the WebSocket Connection_. To do so, the client MUST _Close the
 WebSocket Connection_, and MAY report the problem to the user (which

 would be especially useful for developers) in an appropriate manner.
 Similarly, to do so, the server MUST _Close the WebSocket

 Connection_, and SHOULD log the problem.

 If _The WebSocket Connection is Established_ prior to the point where

 the endpoint is required to _Fail the WebSocket Connection_, the
 endpoint SHOULD send a Close frame with an appropriate status code

 (Section 7.4) before proceeding to _Close the WebSocket Connection_.

 An endpoint MAY omit sending a Close frame if it believes the other
 side is unlikely to be able to receive and process the Close frame,

 due to the nature of the error that led the WebSocket connection to
 fail in the first place. An endpoint MUST NOT continue to attempt to

 process data (including a responding Close frame) from the remote

 endpoint after being instructed to _Fail the WebSocket Connection_.

 Except as indicated above or as specified by the application layer
 (e.g., a script using the WebSocket API), clients SHOULD NOT close

 the connection.

Fette & Melnikov Standards Track [Page 43]

RFC 6455 The WebSocket Protocol December 2011

7.2. Abnormal Closures

7.2.1. Client-Initiated Closure

 Certain algorithms, in particular during the opening handshake,

 require the client to _Fail the WebSocket Connection_. To do so, the

 client MUST _Fail the WebSocket Connection_ as defined in
 Section 7.1.7.

 If at any point the underlying transport layer connection is

 unexpectedly lost, the client MUST _Fail the WebSocket Connection_.

 Except as indicated above or as specified by the application layer

 (e.g., a script using the WebSocket API), clients SHOULD NOT close
 the connection.

7.2.2. Server-Initiated Closure

 Certain algorithms require or recommend that the server _Abort the
 WebSocket Connection_ during the opening handshake. To do so, the

 server MUST simply _Close the WebSocket Connection_ (Section 7.1.1).

7.2.3. Recovering from Abnormal Closure

 Abnormal closures may be caused by any number of reasons. Such

 closures could be the result of a transient error, in which case

 reconnecting may lead to a good connection and a resumption of normal
 operations. Such closures may also be the result of a nontransient

Page 33 of 53

 problem, in which case if each deployed client experiences an
 abnormal closure and immediately and persistently tries to reconnect,

 the server may experience what amounts to a denial-of-service attack
 by a large number of clients trying to reconnect. The end result of

 such a scenario could be that the service is unable to recover in a

 timely manner or recovery is made much more difficult.

 To prevent this, clients SHOULD use some form of backoff when trying
 to reconnect after abnormal closures as described in this section.

 The first reconnect attempt SHOULD be delayed by a random amount of
 time. The parameters by which this random delay is chosen are left

 to the client to decide; a value chosen randomly between 0 and 5
 seconds is a reasonable initial delay though clients MAY choose a

 different interval from which to select a delay length based on

 implementation experience and particular application.

 Should the first reconnect attempt fail, subsequent reconnect
 attempts SHOULD be delayed by increasingly longer amounts of time,

 using a method such as truncated binary exponential backoff.

Fette & Melnikov Standards Track [Page 44]

RFC 6455 The WebSocket Protocol December 2011

7.3. Normal Closure of Connections

 Servers MAY close the WebSocket connection whenever desired. Clients

 SHOULD NOT close the WebSocket connection arbitrarily. In either
 case, an endpoint initiates a closure by following the procedures to

 Start the WebSocket Closing Handshake (Section 7.1.2).

7.4. Status Codes

 When closing an established connection (e.g., when sending a Close

 frame, after the opening handshake has completed), an endpoint MAY

 indicate a reason for closure. The interpretation of this reason by
 an endpoint, and the action an endpoint should take given this

 reason, are left undefined by this specification. This specification
 defines a set of pre-defined status codes and specifies which ranges

 may be used by extensions, frameworks, and end applications. The

 status code and any associated textual message are optional
 components of a Close frame.

7.4.1. Defined Status Codes

 Endpoints MAY use the following pre-defined status codes when sending
 a Close frame.

 1000

 1000 indicates a normal closure, meaning that the purpose for
 which the connection was established has been fulfilled.

 1001

 1001 indicates that an endpoint is "going away", such as a server
 going down or a browser having navigated away from a page.

 1002

 1002 indicates that an endpoint is terminating the connection due
 to a protocol error.

 1003

 1003 indicates that an endpoint is terminating the connection
 because it has received a type of data it cannot accept (e.g., an

Page 34 of 53

 endpoint that understands only text data MAY send this if it
 receives a binary message).

Fette & Melnikov Standards Track [Page 45]

RFC 6455 The WebSocket Protocol December 2011

 1004

 Reserved. The specific meaning might be defined in the future.

 1005

 1005 is a reserved value and MUST NOT be set as a status code in a
 Close control frame by an endpoint. It is designated for use in

 applications expecting a status code to indicate that no status

 code was actually present.

 1006

 1006 is a reserved value and MUST NOT be set as a status code in a

 Close control frame by an endpoint. It is designated for use in
 applications expecting a status code to indicate that the

 connection was closed abnormally, e.g., without sending or
 receiving a Close control frame.

 1007

 1007 indicates that an endpoint is terminating the connection
 because it has received data within a message that was not

 consistent with the type of the message (e.g., non-UTF-8 [RFC3629]

 data within a text message).

 1008

 1008 indicates that an endpoint is terminating the connection

 because it has received a message that violates its policy. This
 is a generic status code that can be returned when there is no

 other more suitable status code (e.g., 1003 or 1009) or if there
 is a need to hide specific details about the policy.

 1009

 1009 indicates that an endpoint is terminating the connection
 because it has received a message that is too big for it to

 process.

 1010

 1010 indicates that an endpoint (client) is terminating the

 connection because it has expected the server to negotiate one or

 more extension, but the server didn't return them in the response
 message of the WebSocket handshake. The list of extensions that

Fette & Melnikov Standards Track [Page 46]

RFC 6455 The WebSocket Protocol December 2011

 are needed SHOULD appear in the /reason/ part of the Close frame.

 Note that this status code is not used by the server, because it
 can fail the WebSocket handshake instead.

 1011

 1011 indicates that a server is terminating the connection because
 it encountered an unexpected condition that prevented it from

 fulfilling the request.

 1015

Page 35 of 53

 1015 is a reserved value and MUST NOT be set as a status code in a

 Close control frame by an endpoint. It is designated for use in
 applications expecting a status code to indicate that the

 connection was closed due to a failure to perform a TLS handshake

 (e.g., the server certificate can't be verified).

7.4.2. Reserved Status Code Ranges

 0-999

 Status codes in the range 0-999 are not used.

 1000-2999

 Status codes in the range 1000-2999 are reserved for definition by
 this protocol, its future revisions, and extensions specified in a

 permanent and readily available public specification.

 3000-3999

 Status codes in the range 3000-3999 are reserved for use by

 libraries, frameworks, and applications. These status codes are
 registered directly with IANA. The interpretation of these codes

 is undefined by this protocol.

 4000-4999

 Status codes in the range 4000-4999 are reserved for private use

 and thus can't be registered. Such codes can be used by prior

 agreements between WebSocket applications. The interpretation of
 these codes is undefined by this protocol.

Fette & Melnikov Standards Track [Page 47]

RFC 6455 The WebSocket Protocol December 2011

8. Error Handling

8.1. Handling Errors in UTF-8-Encoded Data

 When an endpoint is to interpret a byte stream as UTF-8 but finds
 that the byte stream is not, in fact, a valid UTF-8 stream, that

 endpoint MUST _Fail the WebSocket Connection_. This rule applies
 both during the opening handshake and during subsequent data

 exchange.

9. Extensions

 WebSocket clients MAY request extensions to this specification, and

 WebSocket servers MAY accept some or all extensions requested by the

 client. A server MUST NOT respond with any extension not requested
 by the client. If extension parameters are included in negotiations

 between the client and the server, those parameters MUST be chosen in
 accordance with the specification of the extension to which the

 parameters apply.

9.1. Negotiating Extensions

 A client requests extensions by including a |Sec-WebSocket-

 Extensions| header field, which follows the normal rules for HTTP

 header fields (see [RFC2616], Section 4.2) and the value of the
 header field is defined by the following ABNF [RFC2616]. Note that

 this section is using ABNF syntax/rules from [RFC2616], including the
 "implied *LWS rule". If a value is received by either the client or

 the server during negotiation that does not conform to the ABNF

 below, the recipient of such malformed data MUST immediately _Fail
 the WebSocket Connection_.

Page 36 of 53

 Sec-WebSocket-Extensions = extension-list

 extension-list = 1#extension
 extension = extension-token *(";" extension-param)

 extension-token = registered-token

 registered-token = token
 extension-param = token ["=" (token | quoted-string)]

 ;When using the quoted-string syntax variant, the value
 ;after quoted-string unescaping MUST conform to the

 ;'token' ABNF.

Fette & Melnikov Standards Track [Page 48]

RFC 6455 The WebSocket Protocol December 2011

 Note that like other HTTP header fields, this header field MAY be

 split or combined across multiple lines. Ergo, the following are
 equivalent:

 Sec-WebSocket-Extensions: foo

 Sec-WebSocket-Extensions: bar; baz=2

 is exactly equivalent to

 Sec-WebSocket-Extensions: foo, bar; baz=2

 Any extension-token used MUST be a registered token (see
 Section 11.4). The parameters supplied with any given extension MUST

 be defined for that extension. Note that the client is only offering
 to use any advertised extensions and MUST NOT use them unless the

 server indicates that it wishes to use the extension.

 Note that the order of extensions is significant. Any interactions

 between multiple extensions MAY be defined in the documents defining
 the extensions. In the absence of such definitions, the

 interpretation is that the header fields listed by the client in its

 request represent a preference of the header fields it wishes to use,
 with the first options listed being most preferable. The extensions

 listed by the server in response represent the extensions actually in
 use for the connection. Should the extensions modify the data and/or

 framing, the order of operations on the data should be assumed to be

 the same as the order in which the extensions are listed in the
 server's response in the opening handshake.

 For example, if there are two extensions "foo" and "bar" and if the

 header field |Sec-WebSocket-Extensions| sent by the server has the

 value "foo, bar", then operations on the data will be made as
 bar(foo(data)), be those changes to the data itself (such as

 compression) or changes to the framing that may "stack".

 Non-normative examples of acceptable extension header fields (note

 that long lines are folded for readability):

 Sec-WebSocket-Extensions: deflate-stream
 Sec-WebSocket-Extensions: mux; max-channels=4; flow-control,

 deflate-stream

 Sec-WebSocket-Extensions: private-extension

 A server accepts one or more extensions by including a
 |Sec-WebSocket-Extensions| header field containing one or more

 extensions that were requested by the client. The interpretation of

Fette & Melnikov Standards Track [Page 49]

RFC 6455 The WebSocket Protocol December 2011

 any extension parameters, and what constitutes a valid response by a

 server to a requested set of parameters by a client, will be defined
 by each such extension.

Page 37 of 53

9.2. Known Extensions

 Extensions provide a mechanism for implementations to opt-in to

 additional protocol features. This document doesn't define any

 extension, but implementations MAY use extensions defined separately.

10. Security Considerations

 This section describes some security considerations applicable to the

 WebSocket Protocol. Specific security considerations are described
 in subsections of this section.

10.1. Non-Browser Clients

 The WebSocket Protocol protects against malicious JavaScript running
 inside a trusted application such as a web browser, for example, by

 checking of the |Origin| header field (see below). See Section 1.6
 for additional details. Such assumptions don't hold true in the case

 of a more-capable client.

 While this protocol is intended to be used by scripts in web pages,

 it can also be used directly by hosts. Such hosts are acting on
 their own behalf and can therefore send fake |Origin| header fields,

 misleading the server. Servers should therefore be careful about

 assuming that they are talking directly to scripts from known origins
 and must consider that they might be accessed in unexpected ways. In

 particular, a server should not trust that any input is valid.

 EXAMPLE: If the server uses input as part of SQL queries, all input

 text should be escaped before being passed to the SQL server, lest
 the server be susceptible to SQL injection.

10.2. Origin Considerations

 Servers that are not intended to process input from any web page but
 only for certain sites SHOULD verify the |Origin| field is an origin

 they expect. If the origin indicated is unacceptable to the server,
 then it SHOULD respond to the WebSocket handshake with a reply

 containing HTTP 403 Forbidden status code.

 The |Origin| header field protects from the attack cases when the

 untrusted party is typically the author of a JavaScript application
 that is executing in the context of the trusted client. The client

 itself can contact the server and, via the mechanism of the |Origin|

Fette & Melnikov Standards Track [Page 50]

RFC 6455 The WebSocket Protocol December 2011

 header field, determine whether to extend those communication

 privileges to the JavaScript application. The intent is not to
 prevent non-browsers from establishing connections but rather to

 ensure that trusted browsers under the control of potentially
 malicious JavaScript cannot fake a WebSocket handshake.

10.3. Attacks On Infrastructure (Masking)

 In addition to endpoints being the target of attacks via WebSockets,
 other parts of web infrastructure, such as proxies, may be the

 subject of an attack.

 As this protocol was being developed, an experiment was conducted to

 demonstrate a class of attacks on proxies that led to the poisoning
 of caching proxies deployed in the wild [TALKING]. The general form

 of the attack was to establish a connection to a server under the

 "attacker's" control, perform an UPGRADE on the HTTP connection
 similar to what the WebSocket Protocol does to establish a

Page 38 of 53

 connection, and subsequently send data over that UPGRADEd connection
 that looked like a GET request for a specific known resource (which

 in an attack would likely be something like a widely deployed script
 for tracking hits or a resource on an ad-serving network). The

 remote server would respond with something that looked like a

 response to the fake GET request, and this response would be cached
 by a nonzero percentage of deployed intermediaries, thus poisoning

 the cache. The net effect of this attack would be that if a user
 could be convinced to visit a website the attacker controlled, the

 attacker could potentially poison the cache for that user and other

 users behind the same cache and run malicious script on other
 origins, compromising the web security model.

 To avoid such attacks on deployed intermediaries, it is not

 sufficient to prefix application-supplied data with framing that is

 not compliant with HTTP, as it is not possible to exhaustively
 discover and test that each nonconformant intermediary does not skip

 such non-HTTP framing and act incorrectly on the frame payload.
 Thus, the defense adopted is to mask all data from the client to the

 server, so that the remote script (attacker) does not have control

 over how the data being sent appears on the wire and thus cannot
 construct a message that could be misinterpreted by an intermediary

 as an HTTP request.

 Clients MUST choose a new masking key for each frame, using an

 algorithm that cannot be predicted by end applications that provide
 data. For example, each masking could be drawn from a

 cryptographically strong random number generator. If the same key is
 used or a decipherable pattern exists for how the next key is chosen,

 the attacker can send a message that, when masked, could appear to be

Fette & Melnikov Standards Track [Page 51]

RFC 6455 The WebSocket Protocol December 2011

 an HTTP request (by taking the message the attacker wishes to see on

 the wire and masking it with the next masking key to be used, the
 masking key will effectively unmask the data when the client applies

 it).

 It is also necessary that once the transmission of a frame from a

 client has begun, the payload (application-supplied data) of that
 frame must not be capable of being modified by the application.

 Otherwise, an attacker could send a long frame where the initial data
 was a known value (such as all zeros), compute the masking key being

 used upon receipt of the first part of the data, and then modify the

 data that is yet to be sent in the frame to appear as an HTTP request
 when masked. (This is essentially the same problem described in the

 previous paragraph with using a known or predictable masking key.)
 If additional data is to be sent or data to be sent is somehow

 changed, that new or changed data must be sent in a new frame and

 thus with a new masking key. In short, once transmission of a frame
 begins, the contents must not be modifiable by the remote script

 (application).

 The threat model being protected against is one in which the client

 sends data that appears to be an HTTP request. As such, the channel
 that needs to be masked is the data from the client to the server.

 The data from the server to the client can be made to look like a
 response, but to accomplish this request, the client must also be

 able to forge a request. As such, it was not deemed necessary to

 mask data in both directions (the data from the server to the client
 is not masked).

 Despite the protection provided by masking, non-compliant HTTP

 proxies will still be vulnerable to poisoning attacks of this type by

 clients and servers that do not apply masking.

Page 39 of 53

10.4. Implementation-Specific Limits

 Implementations that have implementation- and/or platform-specific
 limitations regarding the frame size or total message size after

 reassembly from multiple frames MUST protect themselves against

 exceeding those limits. (For example, a malicious endpoint can try
 to exhaust its peer's memory or mount a denial-of-service attack by

 sending either a single big frame (e.g., of size 2**60) or by sending
 a long stream of small frames that are a part of a fragmented

 message.) Such an implementation SHOULD impose a limit on frame

 sizes and the total message size after reassembly from multiple
 frames.

Fette & Melnikov Standards Track [Page 52]

RFC 6455 The WebSocket Protocol December 2011

10.5. WebSocket Client Authentication

 This protocol doesn't prescribe any particular way that servers can

 authenticate clients during the WebSocket handshake. The WebSocket

 server can use any client authentication mechanism available to a
 generic HTTP server, such as cookies, HTTP authentication, or TLS

 authentication.

10.6. Connection Confidentiality and Integrity

 Connection confidentiality and integrity is provided by running the

 WebSocket Protocol over TLS (wss URIs). WebSocket implementations
 MUST support TLS and SHOULD employ it when communicating with their

 peers.

 For connections using TLS, the amount of benefit provided by TLS

 depends greatly on the strength of the algorithms negotiated during
 the TLS handshake. For example, some TLS cipher mechanisms don't

 provide connection confidentiality. To achieve reasonable levels of

 protection, clients should use only Strong TLS algorithms. "Web
 Security Context: User Interface Guidelines"

 [W3C.REC-wsc-ui-20100812] discusses what constitutes Strong TLS
 algorithms. [RFC5246] provides additional guidance in Appendix A.5

 and Appendix D.3.

10.7. Handling of Invalid Data

 Incoming data MUST always be validated by both clients and servers.

 If, at any time, an endpoint is faced with data that it does not

 understand or that violates some criteria by which the endpoint
 determines safety of input, or when the endpoint sees an opening

 handshake that does not correspond to the values it is expecting
 (e.g., incorrect path or origin in the client request), the endpoint

 MAY drop the TCP connection. If the invalid data was received after

 a successful WebSocket handshake, the endpoint SHOULD send a Close
 frame with an appropriate status code (Section 7.4) before proceeding

 to _Close the WebSocket Connection_. Use of a Close frame with an
 appropriate status code can help in diagnosing the problem. If the

 invalid data is sent during the WebSocket handshake, the server

 SHOULD return an appropriate HTTP [RFC2616] status code.

 A common class of security problems arises when sending text data
 using the wrong encoding. This protocol specifies that messages with

 a Text data type (as opposed to Binary or other types) contain UTF-8-

 encoded data. Although the length is still indicated and
 applications implementing this protocol should use the length to

 determine where the frame actually ends, sending data in an improper

Fette & Melnikov Standards Track [Page 53]

RFC 6455 The WebSocket Protocol December 2011

Page 40 of 53

 encoding may still break assumptions that applications built on top

 of this protocol may make, leading to anything from misinterpretation

 of data to loss of data or potential security bugs.

10.8. Use of SHA-1 by the WebSocket Handshake

 The WebSocket handshake described in this document doesn't depend on

 any security properties of SHA-1, such as collision resistance or

 resistance to the second pre-image attack (as described in

 [RFC4270]).

11. IANA Considerations

11.1. Registration of New URI Schemes

11.1.1. Registration of "ws" Scheme

 A |ws| URI identifies a WebSocket server and resource name.

 URI scheme name

 ws

 Status

 Permanent

 URI scheme syntax

 Using the ABNF [RFC5234] syntax and ABNF terminals from the URI

 specification [RFC3986]:

 "ws:" "//" authority path-abempty ["?" query]

 The <path-abempty> and <query> [RFC3986] components form the resource

 name sent to the server to identify the kind of service desired.

 Other components have the meanings described in [RFC3986].

 URI scheme semantics

 The only operation for this scheme is to open a connection using

 the WebSocket Protocol.

 Encoding considerations

 Characters in the host component that are excluded by the syntax

 defined above MUST be converted from Unicode to ASCII as specified

 in [RFC3987] or its replacement. For the purposes of scheme-based

 normalization, Internationalized Domain Name (IDN) forms of the

 host component and their conversions to punycode are considered

 equivalent (see Section 5.3.3 of [RFC3987]).

Fette & Melnikov Standards Track [Page 54]

RFC 6455 The WebSocket Protocol December 2011

 Characters in other components that are excluded by the syntax

 defined above MUST be converted from Unicode to ASCII by first

 encoding the characters as UTF-8 and then replacing the

 corresponding bytes using their percent-encoded form as defined in

 the URI [RFC3986] and Internationalized Resource Identifier (IRI)

 [RFC3987] specifications.

 Applications/protocols that use this URI scheme name

 WebSocket Protocol

 Interoperability considerations

 Use of WebSocket requires use of HTTP version 1.1 or higher.

 Security considerations

 See "Security Considerations" section.

 Contact

Page 41 of 53

 HYBI WG <hybi@ietf.org>

 Author/Change controller

 IETF <iesg@ietf.org>

 References

 RFC 6455

11.1.2. Registration of "wss" Scheme

 A |wss| URI identifies a WebSocket server and resource name and

 indicates that traffic over that connection is to be protected via

 TLS (including standard benefits of TLS such as data confidentiality

 and integrity and endpoint authentication).

 URI scheme name

 wss

 Status

 Permanent

 URI scheme syntax

 Using the ABNF [RFC5234] syntax and ABNF terminals from the URI

 specification [RFC3986]:

 "wss:" "//" authority path-abempty ["?" query]

 The <path-abempty> and <query> components form the resource name sent

 to the server to identify the kind of service desired. Other

 components have the meanings described in [RFC3986].

Fette & Melnikov Standards Track [Page 55]

RFC 6455 The WebSocket Protocol December 2011

 URI scheme semantics

 The only operation for this scheme is to open a connection using

 the WebSocket Protocol, encrypted using TLS.

 Encoding considerations

 Characters in the host component that are excluded by the syntax

 defined above MUST be converted from Unicode to ASCII as specified

 in [RFC3987] or its replacement. For the purposes of scheme-based

 normalization IDN forms of the host component and their

 conversions to punycode are considered equivalent (see Section

 5.3.3 of [RFC3987]).

 Characters in other components that are excluded by the syntax

 defined above MUST be converted from Unicode to ASCII by first

 encoding the characters as UTF-8 and then replacing the

 corresponding bytes using their percent-encoded form as defined in

 the URI [RFC3986] and IRI [RFC3987] specifications.

 Applications/protocols that use this URI scheme name

 WebSocket Protocol over TLS

 Interoperability considerations

 Use of WebSocket requires use of HTTP version 1.1 or higher.

 Security considerations

 See "Security Considerations" section.

 Contact

 HYBI WG <hybi@ietf.org>

 Author/Change controller

 IETF <iesg@ietf.org>

Page 42 of 53

 References

 RFC 6455

11.2. Registration of the "WebSocket" HTTP Upgrade Keyword

 This section defines a keyword registered in the HTTP Upgrade Tokens

 Registry as per RFC 2817 [RFC2817].

 Name of token

 WebSocket

 Author/Change controller

 IETF <iesg@ietf.org>

Fette & Melnikov Standards Track [Page 56]

RFC 6455 The WebSocket Protocol December 2011

 Contact

 HYBI <hybi@ietf.org>

 References

 RFC 6455

11.3. Registration of New HTTP Header Fields

11.3.1. Sec-WebSocket-Key

 This section describes a header field registered in the Permanent

 Message Header Field Names registry [RFC3864].

 Header field name

 Sec-WebSocket-Key

 Applicable protocol

 http

 Status

 standard

 Author/Change controller

 IETF

 Specification document(s)

 RFC 6455

 Related information

 This header field is only used for WebSocket opening handshake.

 The |Sec-WebSocket-Key| header field is used in the WebSocket opening

 handshake. It is sent from the client to the server to provide part

 of the information used by the server to prove that it received a

 valid WebSocket opening handshake. This helps ensure that the server

 does not accept connections from non-WebSocket clients (e.g., HTTP

 clients) that are being abused to send data to unsuspecting WebSocket

 servers.

 The |Sec-WebSocket-Key| header field MUST NOT appear more than once

 in an HTTP request.

Fette & Melnikov Standards Track [Page 57]

RFC 6455 The WebSocket Protocol December 2011

11.3.2. Sec-WebSocket-Extensions

 This section describes a header field for registration in the

 Permanent Message Header Field Names registry [RFC3864].

Page 43 of 53

 Header field name

 Sec-WebSocket-Extensions

 Applicable protocol

 http

 Status

 standard

 Author/Change controller

 IETF

 Specification document(s)

 RFC 6455

 Related information

 This header field is only used for WebSocket opening handshake.

 The |Sec-WebSocket-Extensions| header field is used in the WebSocket

 opening handshake. It is initially sent from the client to the

 server, and then subsequently sent from the server to the client, to

 agree on a set of protocol-level extensions to use for the duration

 of the connection.

 The |Sec-WebSocket-Extensions| header field MAY appear multiple times

 in an HTTP request (which is logically the same as a single

 |Sec-WebSocket-Extensions| header field that contains all values.

 However, the |Sec-WebSocket-Extensions| header field MUST NOT appear

 more than once in an HTTP response.

11.3.3. Sec-WebSocket-Accept

 This section describes a header field registered in the Permanent

 Message Header Field Names registry [RFC3864].

 Header field name

 Sec-WebSocket-Accept

 Applicable protocol

 http

 Status

 standard

Fette & Melnikov Standards Track [Page 58]

RFC 6455 The WebSocket Protocol December 2011

 Author/Change controller

 IETF

 Specification document(s)

 RFC 6455

 Related information

 This header field is only used for the WebSocket opening

 handshake.

 The |Sec-WebSocket-Accept| header field is used in the WebSocket

 opening handshake. It is sent from the server to the client to

 confirm that the server is willing to initiate the WebSocket

 connection.

 The |Sec-WebSocket-Accept| header MUST NOT appear more than once in

 an HTTP response.

11.3.4. Sec-WebSocket-Protocol

Page 44 of 53

 This section describes a header field registered in the Permanent

 Message Header Field Names registry [RFC3864].

 Header field name

 Sec-WebSocket-Protocol

 Applicable protocol

 http

 Status

 standard

 Author/Change controller

 IETF

 Specification document(s)

 RFC 6455

 Related information

 This header field is only used for the WebSocket opening

 handshake.

 The |Sec-WebSocket-Protocol| header field is used in the WebSocket

 opening handshake. It is sent from the client to the server and back

 from the server to the client to confirm the subprotocol of the

 connection. This enables scripts to both select a subprotocol and be

 sure that the server agreed to serve that subprotocol.

Fette & Melnikov Standards Track [Page 59]

RFC 6455 The WebSocket Protocol December 2011

 The |Sec-WebSocket-Protocol| header field MAY appear multiple times

 in an HTTP request (which is logically the same as a single

 |Sec-WebSocket-Protocol| header field that contains all values).

 However, the |Sec-WebSocket-Protocol| header field MUST NOT appear

 more than once in an HTTP response.

11.3.5. Sec-WebSocket-Version

 This section describes a header field registered in the Permanent

 Message Header Field Names registry [RFC3864].

 Header field name

 Sec-WebSocket-Version

 Applicable protocol

 http

 Status

 standard

 Author/Change controller

 IETF

 Specification document(s)

 RFC 6455

 Related information

 This header field is only used for the WebSocket opening

 handshake.

 The |Sec-WebSocket-Version| header field is used in the WebSocket

 opening handshake. It is sent from the client to the server to

 indicate the protocol version of the connection. This enables

 servers to correctly interpret the opening handshake and subsequent

 data being sent from the data, and close the connection if the server

 cannot interpret that data in a safe manner. The |Sec-WebSocket-

Page 45 of 53

 Version| header field is also sent from the server to the client on
 WebSocket handshake error, when the version received from the client

 does not match a version understood by the server. In such a case,
 the header field includes the protocol version(s) supported by the

 server.

 Note that there is no expectation that higher version numbers are

 necessarily backward compatible with lower version numbers.

Fette & Melnikov Standards Track [Page 60]

RFC 6455 The WebSocket Protocol December 2011

 The |Sec-WebSocket-Version| header field MAY appear multiple times in
 an HTTP response (which is logically the same as a single

 |Sec-WebSocket-Version| header field that contains all values).

 However, the |Sec-WebSocket-Version| header field MUST NOT appear
 more than once in an HTTP request.

11.4. WebSocket Extension Name Registry

 This specification creates a new IANA registry for WebSocket
 Extension names to be used with the WebSocket Protocol in accordance

 with the principles set out in RFC 5226 [RFC5226].

 As part of this registry, IANA maintains the following information:

 Extension Identifier

 The identifier of the extension, as will be used in the
 |Sec-WebSocket-Extensions| header field registered in

 Section 11.3.2 of this specification. The value must conform to

 the requirements for an extension-token as defined in Section 9.1
 of this specification.

 Extension Common Name

 The name of the extension, as the extension is generally referred

 to.

 Extension Definition
 A reference to the document in which the extension being used with

 the WebSocket Protocol is defined.

 Known Incompatible Extensions

 A list of extension identifiers with which this extension is known
 to be incompatible.

 WebSocket Extension names are to be subject to the "First Come First
 Served" IANA registration policy [RFC5226].

 There are no initial values in this registry.

11.5. WebSocket Subprotocol Name Registry

 This specification creates a new IANA registry for WebSocket
 Subprotocol names to be used with the WebSocket Protocol in

 accordance with the principles set out in RFC 5226 [RFC5226].

Fette & Melnikov Standards Track [Page 61]

RFC 6455 The WebSocket Protocol December 2011

 As part of this registry, IANA maintains the following information:

 Subprotocol Identifier

 The identifier of the subprotocol, as will be used in the
 |Sec-WebSocket-Protocol| header field registered in Section 11.3.4

 of this specification. The value must conform to the requirements

 given in item 10 of Section 4.1 of this specification -- namely,
 the value must be a token as defined by RFC 2616 [RFC2616].

Page 46 of 53

 Subprotocol Common Name

 The name of the subprotocol, as the subprotocol is generally
 referred to.

 Subprotocol Definition
 A reference to the document in which the subprotocol being used

 with the WebSocket Protocol is defined.

 WebSocket Subprotocol names are to be subject to the "First Come

 First Served" IANA registration policy [RFC5226].

11.6. WebSocket Version Number Registry

 This specification creates a new IANA registry for WebSocket Version

 Numbers to be used with the WebSocket Protocol in accordance with the
 principles set out in RFC 5226 [RFC5226].

 As part of this registry, IANA maintains the following information:

 Version Number
 The version number to be used in the |Sec-WebSocket-Version| is

 specified in Section 4.1 of this specification. The value must be
 a non-negative integer in the range between 0 and 255 (inclusive).

 Reference
 The RFC requesting a new version number or a draft name with

 version number (see below).

 Status

 Either "Interim" or "Standard". See below for description.

 A version number is designated as either "Interim" or "Standard".

 A "Standard" version number is documented in an RFC and used to

 identify a major, stable version of the WebSocket protocol, such as
 the version defined by this RFC. "Standard" version numbers are

 subject to the "IETF Review" IANA registration policy [RFC5226].

Fette & Melnikov Standards Track [Page 62]

RFC 6455 The WebSocket Protocol December 2011

 An "Interim" version number is documented in an Internet-Draft and
 used to help implementors identify and interoperate with deployed

 versions of the WebSocket protocol, such as versions developed before

 the publication of this RFC. "Interim" version numbers are subject
 to the "Expert Review" IANA registration policy [RFC5226], with the

 chairs of the HYBI Working Group (or, if the working group closes,
 the Area Directors for the IETF Applications Area) being the initial

 Designated Experts.

 IANA has added initial values to the registry as follows.

 +--------+---+----------+

 |Version | Reference | Status |

 | Number | | |
 +--------+---+----------+

 | 0 + draft-ietf-hybi-thewebsocketprotocol-00 | Interim |
 +--------+---+----------+

 | 1 + draft-ietf-hybi-thewebsocketprotocol-01 | Interim |

 +--------+---+----------+
 | 2 + draft-ietf-hybi-thewebsocketprotocol-02 | Interim |

 +--------+---+----------+
 | 3 + draft-ietf-hybi-thewebsocketprotocol-03 | Interim |

 +--------+---+----------+

 | 4 + draft-ietf-hybi-thewebsocketprotocol-04 | Interim |
 +--------+---+----------+

Page 47 of 53

 | 5 + draft-ietf-hybi-thewebsocketprotocol-05 | Interim |
 +--------+---+----------+

 | 6 + draft-ietf-hybi-thewebsocketprotocol-06 | Interim |
 +--------+---+----------+

 | 7 + draft-ietf-hybi-thewebsocketprotocol-07 | Interim |

 +--------+---+----------+
 | 8 + draft-ietf-hybi-thewebsocketprotocol-08 | Interim |

 +--------+---+----------+
 | 9 + Reserved | |

 +--------+---+----------+

 | 10 + Reserved | |
 +--------+---+----------+

 | 11 + Reserved | |
 +--------+---+----------+

 | 12 + Reserved | |

 +--------+---+----------+
 | 13 + RFC 6455 | Standard |

 +--------+---+----------+

Fette & Melnikov Standards Track [Page 63]

RFC 6455 The WebSocket Protocol December 2011

11.7. WebSocket Close Code Number Registry

 This specification creates a new IANA registry for WebSocket

 Connection Close Code Numbers in accordance with the principles set
 out in RFC 5226 [RFC5226].

 As part of this registry, IANA maintains the following information:

 Status Code
 The Status Code denotes a reason for a WebSocket connection

 closure as per Section 7.4 of this document. The status code is
 an integer number between 1000 and 4999 (inclusive).

 Meaning
 The meaning of the status code. Each status code has to have a

 unique meaning.

 Contact

 A contact for the entity reserving the status code.

 Reference
 The stable document requesting the status codes and defining their

 meaning. This is required for status codes in the range 1000-2999

 and recommended for status codes in the range 3000-3999.

 WebSocket Close Code Numbers are subject to different registration
 requirements depending on their range. Requests for status codes for

 use by this protocol and its subsequent versions or extensions are

 subject to any one of the "Standards Action", "Specification
 Required" (which implies "Designated Expert"), or "IESG Review" IANA

 registration policies and should be granted in the range 1000-2999.
 Requests for status codes for use by libraries, frameworks, and

 applications are subject to the "First Come First Served" IANA

 registration policy and should be granted in the range 3000-3999.
 The range of status codes from 4000-4999 is designated for Private

 Use. Requests should indicate whether they are requesting status
 codes for use by the WebSocket Protocol (or a future version of the

 protocol), by extensions, or by libraries/frameworks/applications.

Fette & Melnikov Standards Track [Page 64]

RFC 6455 The WebSocket Protocol December 2011

 IANA has added initial values to the registry as follows.

 |Status Code | Meaning | Contact | Reference |

Page 48 of 53

 -+------------+-----------------+---------------+-----------|
 | 1000 | Normal Closure | hybi@ietf.org | RFC 6455 |

 -+------------+-----------------+---------------+-----------|
 | 1001 | Going Away | hybi@ietf.org | RFC 6455 |

 -+------------+-----------------+---------------+-----------|

 | 1002 | Protocol error | hybi@ietf.org | RFC 6455 |
 -+------------+-----------------+---------------+-----------|

 | 1003 | Unsupported Data| hybi@ietf.org | RFC 6455 |
 -+------------+-----------------+---------------+-----------|

 | 1004 | ---Reserved---- | hybi@ietf.org | RFC 6455 |

 -+------------+-----------------+---------------+-----------|
 | 1005 | No Status Rcvd | hybi@ietf.org | RFC 6455 |

 -+------------+-----------------+---------------+-----------|
 | 1006 | Abnormal Closure| hybi@ietf.org | RFC 6455 |

 -+------------+-----------------+---------------+-----------|

 | 1007 | Invalid frame | hybi@ietf.org | RFC 6455 |
 | | payload data | | |

 -+------------+-----------------+---------------+-----------|
 | 1008 | Policy Violation| hybi@ietf.org | RFC 6455 |

 -+------------+-----------------+---------------+-----------|

 | 1009 | Message Too Big | hybi@ietf.org | RFC 6455 |
 -+------------+-----------------+---------------+-----------|

 | 1010 | Mandatory Ext. | hybi@ietf.org | RFC 6455 |
 -+------------+-----------------+---------------+-----------|

 | 1011 | Internal Server | hybi@ietf.org | RFC 6455 |

 | | Error | | |
 -+------------+-----------------+---------------+-----------|

 | 1015 | TLS handshake | hybi@ietf.org | RFC 6455 |
 -+------------+-----------------+---------------+-----------|

11.8. WebSocket Opcode Registry

 This specification creates a new IANA registry for WebSocket Opcodes
 in accordance with the principles set out in RFC 5226 [RFC5226].

 As part of this registry, IANA maintains the following information:

 Opcode
 The opcode denotes the frame type of the WebSocket frame, as

 defined in Section 5.2. The opcode is an integer number between 0

 and 15, inclusive.

 Meaning
 The meaning of the opcode value.

Fette & Melnikov Standards Track [Page 65]
RFC 6455 The WebSocket Protocol December 2011

 Reference

 The specification requesting the opcode.

 WebSocket Opcode numbers are subject to the "Standards Action" IANA

 registration policy [RFC5226].

 IANA has added initial values to the registry as follows.

 |Opcode | Meaning | Reference |

 -+--------+-------------------------------------+-----------|
 | 0 | Continuation Frame | RFC 6455 |

 -+--------+-------------------------------------+-----------|

 | 1 | Text Frame | RFC 6455 |
 -+--------+-------------------------------------+-----------|

 | 2 | Binary Frame | RFC 6455 |
 -+--------+-------------------------------------+-----------|

 | 8 | Connection Close Frame | RFC 6455 |

 -+--------+-------------------------------------+-----------|
 | 9 | Ping Frame | RFC 6455 |

Page 49 of 53

 -+--------+-------------------------------------+-----------|
 | 10 | Pong Frame | RFC 6455 |

 -+--------+-------------------------------------+-----------|

11.9. WebSocket Framing Header Bits Registry

 This specification creates a new IANA registry for WebSocket Framing

 Header Bits in accordance with the principles set out in RFC 5226
 [RFC5226]. This registry controls assignment of the bits marked

 RSV1, RSV2, and RSV3 in Section 5.2.

 These bits are reserved for future versions or extensions of this

 specification.

 WebSocket Framing Header Bits assignments are subject to the

 "Standards Action" IANA registration policy [RFC5226].

12. Using the WebSocket Protocol from Other Specifications

 The WebSocket Protocol is intended to be used by another

 specification to provide a generic mechanism for dynamic author-
 defined content, e.g., in a specification defining a scripted API.

 Such a specification first needs to _Establish a WebSocket

 Connection_, providing that algorithm with:

 o The destination, consisting of a /host/ and a /port/.

Fette & Melnikov Standards Track [Page 66]

RFC 6455 The WebSocket Protocol December 2011

 o A /resource name/, which allows for multiple services to be

 identified at one host and port.

 o A /secure/ flag, which is true if the connection is to be

 encrypted and false otherwise.

 o An ASCII serialization of an origin [RFC6454] that is being made
 responsible for the connection.

 o Optionally, a string identifying a protocol that is to be layered
 over the WebSocket connection.

 The /host/, /port/, /resource name/, and /secure/ flag are usually

 obtained from a URI using the steps to parse a WebSocket URI's

 components. These steps fail if the URI does not specify a
 WebSocket.

 If at any time the connection is to be closed, then the specification

 needs to use the _Close the WebSocket Connection_ algorithm

 (Section 7.1.1).

 Section 7.1.4 defines when _The WebSocket Connection is Closed_.

 While a connection is open, the specification will need to handle the

 cases when _A WebSocket Message Has Been Received_ (Section 6.2).

 To send some data /data/ to an open connection, the specification
 needs to _Send a WebSocket Message_ (Section 6.1).

13. Acknowledgements

 Special thanks are due to Ian Hickson, who was the original author
 and editor of this protocol. The initial design of this

 specification benefitted from the participation of many people in the

 WHATWG and WHATWG mailing list. Contributions to that specification
 are not tracked by section, but a list of all who contributed to that

Page 50 of 53

 specification is given in the WHATWG HTML specification at
 http://whatwg.org/html5.

 Special thanks also to John Tamplin for providing a significant

 amount of text for the "Data Framing" section of this specification.

 Special thanks also to Adam Barth for providing a significant amount

 of text and background research for the "Data Masking" section of
 this specification.

Fette & Melnikov Standards Track [Page 67]
RFC 6455 The WebSocket Protocol December 2011

 Special thanks to Lisa Dusseault for the Apps Area review (and for

 helping to start this work), Richard Barnes for the Gen-Art review,

 and Magnus Westerlund for the Transport Area Review. Special thanks
 to HYBI WG past and present WG chairs who tirelessly worked behind

 the scene to move this work toward completion: Joe Hildebrand,
 Salvatore Loreto, and Gabriel Montenegro. And last but not least,

 special thank you to the responsible Area Director Peter Saint-Andre.

 Thank you to the following people who participated in discussions on

 the HYBI WG mailing list and contributed ideas and/or provided
 detailed reviews (the list is likely to be incomplete): Greg Wilkins,

 John Tamplin, Willy Tarreau, Maciej Stachowiak, Jamie Lokier, Scott

 Ferguson, Bjoern Hoehrmann, Julian Reschke, Dave Cridland, Andy
 Green, Eric Rescorla, Inaki Baz Castillo, Martin Thomson, Roberto

 Peon, Patrick McManus, Zhong Yu, Bruce Atherton, Takeshi Yoshino,
 Martin J. Duerst, James Graham, Simon Pieters, Roy T. Fielding,

 Mykyta Yevstifeyev, Len Holgate, Paul Colomiets, Piotr Kulaga, Brian

 Raymor, Jan Koehler, Joonas Lehtolahti, Sylvain Hellegouarch, Stephen
 Farrell, Sean Turner, Pete Resnick, Peter Thorson, Joe Mason, John

 Fallows, and Alexander Philippou. Note that people listed above
 didn't necessarily endorse the end result of this work.

14. References

14.1. Normative References

 [ANSI.X3-4.1986]

 American National Standards Institute, "Coded Character
 Set - 7-bit American Standard Code for Information

 Interchange", ANSI X3.4, 1986.

 [FIPS.180-3]

 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS PUB 180-3, October 2008,

 <http://csrc.nist.gov/publications/fips/fips180-3/
 fips180-3_final.pdf>.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928,

 March 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext

 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Fette & Melnikov Standards Track [Page 68]

RFC 6455 The WebSocket Protocol December 2011

 [RFC2817] Khare, R. and S. Lawrence, "Upgrading to TLS Within

 HTTP/1.1", RFC 2817, May 2000.

Page 51 of 53

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,

 September 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource

 Identifiers (IRIs)", RFC 3987, January 2005.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness

 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data

 Encodings", RFC 4648, October 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,

 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax

 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security

 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

14.2. Informative References

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,

 July 2005.

Fette & Melnikov Standards Track [Page 69]

RFC 6455 The WebSocket Protocol December 2011

 [RFC4270] Hoffman, P. and B. Schneier, "Attacks on Cryptographic
 Hashes in Internet Protocols", RFC 4270, November 2005.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 October 2008.

 [RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,

 "Known Issues and Best Practices for the Use of Long

 Polling and Streaming in Bidirectional HTTP", RFC 6202,
 April 2011.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,

 April 2011.

 [TALKING] Huang, L-S., Chen, E., Barth, A., Rescorla, E., and C.

 Jackson, "Talking to Yourself for Fun and Profit", 2010,
 <http://w2spconf.com/2011/papers/websocket.pdf>.

 [W3C.REC-wsc-ui-20100812]
 Roessler, T. and A. Saldhana, "Web Security Context: User

Page 52 of 53

 Interface Guidelines", World Wide Web Consortium
 Recommendation REC-wsc-ui-20100812, August 2010,

 <http://www.w3.org/TR/2010/REC-wsc-ui-20100812/>.

 Latest version available at

 <http://www.w3.org/TR/wsc-ui/>.

 [WSAPI] Hickson, I., "The WebSocket API", W3C Working Draft WD-
 websockets-20110929, September 2011,

 <http://www.w3.org/TR/2011/WD-websockets-20110929/>.

 Latest version available at

 <http://www.w3.org/TR/websockets/>.

 [XMLHttpRequest]

 van Kesteren, A., Ed., "XMLHttpRequest", W3C Candidate
 Recommendation CR-XMLHttpRequest-20100803, August 2010,

 <http://www.w3.org/TR/2010/CR-XMLHttpRequest-20100803/>.

 Latest version available at

 <http://www.w3.org/TR/XMLHttpRequest/>.

Fette & Melnikov Standards Track [Page 70]
RFC 6455 The WebSocket Protocol December 2011

Authors' Addresses

 Ian Fette
 Google, Inc.

 EMail: ifette+ietf@google.com
 URI: http://www.ianfette.com/

 Alexey Melnikov

 Isode Ltd.

 5 Castle Business Village
 36 Station Road

 Hampton, Middlesex TW12 2BX
 UK

 EMail: Alexey.Melnikov@isode.com

Fette & Melnikov Standards Track [Page 71]

Page 53 of 53

